データ・アナリティクス入門

データが導く未来へのビジネス突破口

データ取得の方法をどう改善する? 複数の仮説を立て、それを検証するためのデータを取得することについて学びました。これまでは、既存のデータを用いて検証することが多く、完全な結果ではないと感じることがありました。今後は、仮説の精度を向上させるために、データの取得方法を工夫し、再構築していきたいと思います。 ニーズ調査で次に向かうべきは? また、担当するマーケットのニーズ調査についても学びました。従来の一般的な仮説からもう一歩踏み込み、「なぜ、なり手不足になるのか」という問いに対する仮説を立てて検証し、その結果に基づいて課題を解消するようなサービス案を考えることが重要だと認識しました。 ワーキンググループの成功へは? 現在、社内で行っているワーキンググループでこれを実践しています。ニーズの検証までは完了していますが、まだ具体的なビジネスには結びついていません。「Q2」を実践することで、早期に実際のビジネスへと発展させたいと考えています。 仮説とデータ活用の展望 今後も、仮説の立て方やデータの取り扱い方を工夫し、実務に活かしていきたいです。

データ・アナリティクス入門

データ整理で未来を変える学び

正しい手順はどう? 問題解決の4つのステップは基本的に「What→Where→Why→How」の順で進みます。このプロセスを通じて、あるべき姿と現状のギャップを数値で示すことが重要です。日常の課題解決にはロジックツリーを活用することが一つの手段として有効です。その際のコツとして、過度にMECEを意識するのではなく、感度の良い切り口を見つけることが肝心です。 保険業界の課題は? 具体的な課題として、保険業界でのデジタル化に関連する多くのデータが整理されていない点が挙げられます。この場合、どのようなデータが収集されており、またどのデータが不足しているのかを把握するために、ロジックツリーを用いて整理することが有用です。 施策立案はうまく? データを活用してデジタル化推進の施策やプロモーション案を策定するためにも、まず現状のデータを整理することから始めたいと思います。ロジックツリーを用いることで、デジタル利用率を手続き別や代理店の種別といった切り口で整理し、分析を進めます。これにより、より具体的で効果的な施策につなげることが期待できるでしょう。

データ・アナリティクス入門

フレームワークで広がる思考の旅

フレームワークで何を学んだ? 3C分析や4P分析といったフレームワークを活用しながら、視点を切り替えて仮説を立てる手法を学びました。これにより、論理的に整理された思考の進め方が身につき、より多角的な分析が可能になると感じました。 複数仮説はどう考える? また、仮説を立てる際には、複数の仮説を同時に考えることや、網羅性を持たせることの重要性を再認識しました。一つの仮説に固執せず、様々な可能性を検討することで、より精度の高い分析が行えると実感しました。 データ収集はどう進める? さらに、データ収集に関しては、既存のデータを活用するパターンと新たにデータを取得するパターンがあることを学びました。新しい情報を得るために必ずしも新たなデータの取得が必要なわけではなく、まずは既存のデータを精査し、そこから仮説を考えることも十分に有効であると理解できました。 次はどう活かす? 以上の学びを踏まえ、フレームワークの理解をさらに深め、網羅性をもって複数の仮説を立てられるように努めるとともに、まずは既存データの見直しから取り組んでいきたいと考えています。

データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

データ・アナリティクス入門

仮説が拓くビジネスの未来

仮説はどんな意味? ビジネスにおける仮説という視点と、フレームワークを活用した論点整理の方法を学びました。仮説を持つことで、仕事に取り組む姿勢が変わり、対峙する問題に対する説得力が増すとともに、ビジネス全体のスピードと精度の向上につながることが理解できました。 どう書き出す? また、仮説を立てる際には、単なる思い込みではなく、まずフレームワークに沿って書き出す方法を試してみようと思います。もし思い込みのまま仮説に基づいて行動を始めると、後に仮説と異なる検証が有効であった場合、その検証を継続することが難しくなる恐れがあります。 現状把握の理由は? さらに、仮説設定に入る前の現状把握や定義のすり合わせにも十分な時間を割く重要性を感じました。これにより、データの項目や取得環境などにも注意を払い、より確かな仮説設定ができると考えています。 仮説確保はなぜ? チームでプロジェクトを進める際には、結果以上に良い仮説設定が成功に直結することを改めて認識しました。そのため、検証プロセスに入る前に、仮説設定に十分な時間を確保するよう努めたいと思います。

データ・アナリティクス入門

比較思考がひらく未来への扉

目的と仮説はどう? WEEK1で学んだ内容を振り返る中で、データ分析は「比較」を基本として行われると再認識しました。まず、目的を明確に定め、自分なりの仮説を立てた上で、必要なデータを収集し、分析を実施することで、目標達成のための示唆や考察が導き出されることが理解できました。 解決手順はどう? 問題解決の過程では、「What, Where, Why, How」といった基本ステップを踏むことが大切ですが、これに加えてロジックツリーやMECE、3Cや4Pといったフレームワークを活用することで、より効果的に仮説が立てられると感じました。 データから何得る? また、数字や数式での集約やグラフによる可視化が分析をサポートし、実数と率の両面からのアプローチが有効であると学びました。同時に、既存のデータだけに頼るのではなく、必要なデータを自ら収集する努力と、都合の良いデータに偏らない分析の姿勢が重要だと痛感しました。実施前後の比較を通じて施策の効果検証を行う場面も多く、今期の採用活動の変革を始めとした各施策の評価に、この学びを活かしていきたいと考えています。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く一歩

なぜ仮説検証が必要? 今回の振り返りを通じ、まず仮説検証の重要性を再認識しました。数字を単に眺めるだけではなく、要素ごとに分解し、さまざまな仮説を立てながらデータを検証のツールとして活用する方法が有効だと感じました。また、比較を意識した分析を行うために、率や代表値を用いる手法が非常に効果的であるという考えにも改めて気づかされました。 実績把握で何が変わる? これらの学びは、月次実績の把握や事業計画の検討にも応用できます。過去の実績に基づいて仮説を立て、検証を重ねることで、次年度への具体的な打ち手が明確になっていくと実感しました。前年同月比や前年同期比を活用する手法も、現業務において引き続き継続し、より深い分析に結びつけたいと考えています。 復習と共有で成長は? また、ナノ単科の画面が見られなくなる前に、回帰分析や代表値の部分をしっかり復習し、自分の知識として定着させることが必要だと感じました。さらに、アウトプットの重要性を痛感したため、自ら立てた仮説や検証結果を周囲と共有し、意見を取り入れることで自身の成長を一層促進していきたいと思います。

データ・アナリティクス入門

小さな比較が大きな決断へ

分析の目的は何? 分析は、対象の比較を通して最終的な意思決定に役立てるためのプロセスです。まず、分析の目的をはっきりと定めることが大切です。その際、必要な要素の整理を行い、どのような切り口で分析を進めるかを考えます。 比較とグラフはどう? 具体的には、各要素を同じ尺度で比較できるよう配慮しながら、縦棒グラフや横棒グラフの使い分けに注意を払い、差異を視覚的に把握しやすい構成を目指します。数値データだけでなく、感覚的なスコアも、別の切り口を用いることで定量的に表現できる点が重要です。 柔軟な検討は必要? また、データ分析の依頼を受けた際は、まず目的に関する詳細なヒアリングを行い、分析に必要な各要素の分解や整理を丁寧に実施します。目の前のデータに固執することなく、柔軟な視点から検討することが求められます。 結果のまとめは? 最終的な分析結果のまとめにおいては、伝えたいメッセージに最も適したグラフやダッシュボードを選択することが鍵となります。こうした取り組みが、分析時に生じる躓きや失敗を解決するためのディスカッションに繋がっていくでしょう。

データ・アナリティクス入門

仮説からはじまる成功のヒント

どうやって最速解決する? 課題解決においては、最短かつ最適なルートでゴールに到達することが他者に対する優位性につながると考えます。そのため、場当たり的な対応や、全体をむやみに検証して無駄にコストや時間を費やすことを避けるためにも、まずは仮説を設定することが必要です。いかに精度の高い仮説を立てるかが重要であり、そのためには適切な知識、経験、そして考え方が求められます。 課題の本質は何? また、課題に取り組む際は、まず何が課題であるのかを適切に理解し、把握することが不可欠です。課題が不明確であれば、得られる答えも曖昧になってしまうからです。その上、対象となるビジネスなどのドメイン知識や過去の経験に基づき、適切な仮説設定に注力していきたいと考えています。 経験は十分伝わる? すでに実践している部分もありますが、さらなる精度向上とスキルアップを図るために、フレームワークと呼ばれる考え方のツールを導入して、より高い精度を目指していく所存です。今回学んだ3Cや4Pを基本とし、今後さらに他の手法も取り入れながら、知識と経験を積み重ねていきたいと思います。

データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right