データ・アナリティクス入門

振り返りが生む未来の一歩

問題発生の理由は? 問題が起きた際には、何が問題でどこで起きているのかを順序立てて考える必要性を改めて実感しました。問題を一方的に決めつけ、頭の中だけで解決策をブレインストーミングしても、生産性の高い解決策には結びつかないと感じています。 売上目標の突破は? 売上目標をいつまでにどこまで伸ばすかという課題に常に直面している中で、担当先ごとの「あるべき姿」や「ありたい姿」を考え、現状とのギャップを整理しています。TG顧客の特定や製品価値の十分な伝達について、MECEの視点で問題を洗い出し、短期間での対応が必要なものと一定期間をかけるものに分け、各アプローチを検討しています。これらを定量的に把握することで、説得力のある対策が実現できると確信し、短期間でPDCAサイクルを回しながら自分の行動を検証し、精度を高める重要性を学びました。 現状改善の策は? 担当先においては、あるべき姿やありたい姿を明確に定義し、現状との差を数値で捉えることで現実的な対策を構築しています。あるべきマーケットシェアに到達するために、どこを重点的に攻略するのか、どれだけの顧客に製品価値を理解してもらい、利用していただく必要があるのかを定量的に示すことで、実現可能な戦略となると考えています。また、毎週の振り返りを通じて、翌週には具体的な行動の改善を図っていきたいと思います。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

データ分析で意思決定を劇的に改善!

データ分析の重要性は? 「データ分析は意思決定の手段であり、意思決定を効率的に実現するための重要な用途である」と改めて認識しました。特に「整理」し、「比較対象を具体的に」することの重要性を学びました。ものごとを「具体的に」し、「はっきりさせる」ことで、より良い意思決定に役立てることができます。このプロセスを通じて、各要素の性質や構造を細かい点まで明確にすることが肝要です。 目的を持って分析を始めるには? 基本は「目的をもって分析をする」ことです。データから得られる知見があるため、目的を明確にせずデータを加工し始めてしまうことがありましたが、この点は意識して改善していきたいと思います。 BPRを進める秘訣とは? また、BPR(業務プロセス再構築)を進めるには、関係各所のコンセンサスが重要です。関係者が納得し、了承を得られるような説明が重要であり、定量的なデータから重要要素を可視化し、客観的な根拠を元に合意形成までのプロセスを改善することが求められます。 新たな視点を持つために必要なことは? 学んだ内容をもとに実務で実践し、どのような分析・資料が効果的であるかを把握し、習得していきたいと思います。また、自分自身の考え方の癖や偏りを矯正し、柔軟な視点を持てるようにするために、グループディスカッションを通して多くの視点や考え方を吸収していきたいです。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

データ・アナリティクス入門

パッと見て本文を読みたくなるようなタイトル: 仮説思考で市場の変化に対応する方法

仮説の網羅性を高めるには? 仮説を立てることや仮説を立てる際に用いる視点について学びました。課題に取り組んだときは、思いつきで同じような切り口でしか仮説を立てられませんでしたが、3Cや4P分析を用いることで仮説の網羅性を高めることができると理解しました。思考が凝り固まり、仮説を立てる際に一つの視点に固執してしまうことがありましたが、フレームワークを用いることで柔軟な思考ができるようになりたいと感じます。 採用市場の変化にどう対応する? 急速に変化する採用市場では、「昨年はこのような状況だったのに、今年は全く異なる」という場面が多々あります。仕事をする上で常に仮説思考を持つことで、次にどのような変化が起こるかを予測し、迅速に行動することができると感じました。市場の変化(求職者の志向性、行動、価値観の変容など)を常に仮説に基づいて理解し、顧客に良いサービスを提供できるように努めたいです。 変化に敏感なマーケティングとは? 市場の変化を敏感に感じ取り、対応する学生や求職者に対してマーケティングを行うために、自分から積極的に情報を取りに行くことが重要です。顧客企業の「競合」「市場」「自社」を考慮し、求職者や学生にとってのロイヤリティを明確にし、適切な採用戦略を考える必要があります。また、常に「なぜ変化が起きているのか」を思考し続けることが大切だと感じます。

データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

データ・アナリティクス入門

学びの軌跡が未来を照らす

仮説の切り口はどう? 原因の仮説を洗い出す際は、フレームワークなどを活用しながら大きく2つに分け、対概念の視点を取り入れて考えることが有用です。その後、問題の原因を明確にするために、ステップを踏んでデータを分析することで精度を高められます。 解決策はどう選ぶ? また、解決策を立案する際には、複数の選択肢をまず洗い出し、しっかりとした判断基準と重み付けを設定した上で、定量的な根拠により絞り込むことが重要です。 アンケートの見方は? アンケートの分析においては、満足度や推奨度などの数値から問題点を見つけ出し、フレームワークを用いてMECE(漏れなく・ダブりなく)を意識しながら原因を掘り下げることが考えられます。対応策を検討する際には、現状設定している軸に加え、コスト、スピード、対象範囲、実現可能性などの評価項目に対して重み付けを行いながら施策を選択していくことが求められると感じました。 分析の盲点はどこ? これまでのアンケート分析では、満足度、推奨度、理解度などを全体の平均値で評価する手法が主流でした。しかし、全体の数値は悪くなくとも狙い通りの結果が得られなかった場合や、自由記述回答の中に不満やクレームが見受けられた際には、回答者の属性ごとに分析を行うことで、これまで気づかなかった傾向や問題点を発見できる可能性があると捉えています。

データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

データ・アナリティクス入門

ロジックツリーの本質と実務への応用

MECEの難しさと挑戦 MECEを意識しすぎるあまり、本質的なロジックツリーを作れていないことがあるのは、本当にその通りだと思いました。漏れなく整理するために「その他」を多用している自分を容易に想像でき、今回の講座内容は非常に自分事として受け止めることができました。 良質な示唆を得るには? MECEは重要ですが、あくまでフレームワークの一つであり、問題解決に繋がる良質な示唆を提供できる分け方が求められます。現状の自分の役割としては、営業戦略の策定と売上増加のための施策検討があり、常に課題解決に取り組む状況です。Week 01から学んでいる内容は、まさに今の業務に直結するものです。 定量的な分析を目指して WhatやWhereを置き去りにせず、現状の分析とありたい姿やあるべき姿をしっかり定義し、どこにギャップがあるのかを定量的に、そしてMECEに整理できるようにしたいです。前提となる「現状分析やありたい姿の定義」は、頭の中でわかった気で終わるのではなく、しっかりと言語化することを意識します。 フィードバックの活かし方 MECEのアプローチは、一人でアウトプットを出したうえで、同僚や上司からフィードバックをもらい、自分では気付けない「漏れやダブり」を見つけることが大切です。そのためのブラッシュアップを行い、練習を重ねていきたいと思います。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right