データ・アナリティクス入門

売上2割減に挑む!論理的思考で解決へ

ライブ授業から得た教訓は? ライブ授業で取り上げられた「売上昨対2割減」に向き合う例題についての感想です。このようなオーソドックスな例題に対して、何を知りたいか、どのように仮説を立てるかを考える際、必要な情報を十分に洗い出すことができませんでした。また、適切なグラフを思い浮かべることもできず、ビジュアル化に苦慮しました。しかし、「やみくもに分析しない」「ストーリーを大事にする」という前提は常に意識しています。こうした困難に直面しないよう、フレームワークや論理的思考、分析のための関連情報について日々インプットを続け、実践に活かせるようにしておかなければなりません。 赤字解消に向けた第一歩は? 現在、自部門が赤字という現実に直面しています。まずは実績を集計し、現場のメンバーにもヒアリングしながら情報を集め、自分なりの仮説を明確化することから始めます。そして、4つのステップで分析し、解決に向けて取り組んでいきます。フレームワークを活用し、経験や勘に頼らない形で、フラットに考えながら取り組むつもりです。 チームの協力で問題を解決? 早急に解決が求められる問題のため、迅速に対策を講じます。データ集計の際は、自身の目で確認するだけでなく、メンバーの協力を得ながら多角的にデータを収集します。講座で学んだ内容をチーム内で共有し、部門の問題について関係者とともに仮説を立て、解決策を見つける努力を続けます。

データ・アナリティクス入門

実践で納得!A/Bテストの極意

A/Bテストって何? A/Bテストの実施方法がとても参考になりました。まず、目的を明確に設定した上で、テスト期間や条件をできるだけ統一し、一つの要素に絞ってテストを行う重要性を学びました。これまであまり理解していなかった点を、具体的な説明を受けながらしっかりと納得することができました。 仮説の検証はどう? また、仮説を立ててテストを行い、その検証を実施した後、もし仮説が間違っている場合はなぜそうなったのかを考察することの必要性にも気づかされました。これらの学びは、今後の業務にぜひ活かしていきたいと考えています。 広告効果はどこで? 弊社ではクリスマスシーズンによくWeb広告を実施していますが、その際にA/Bテストを行うことで、広告の成果を向上させることができるのではないかと思います。特に、効果的な文言を選定する点では、コストも低く簡単に実施できるため、今年のクリスマスキャンペーンで取り入れてみたいと考えています。 チームでどう動く? 具体的には、まずチーム内でA/Bテストの概要を共有し、昨年度の広告で使用したビジュアルや文言を振り返りました。その上で、今年のキャンペーンでは複数のパターンのデザインや文言を用意することを提案する予定です。また、正確なデータを得るために、どのくらいの規模のオーディエンスに対してテストを行えばよいかについても、さらに調べて学びたいと思います。

データ・アナリティクス入門

分析の魔法: 自立したアプローチへの道

分析の目的は何を考えるべきか? 分析に取り組む際には、最初に目的の確認と仮説を立てることが重要です。適切に比較するためには、比較項目以外の条件を統一することで、意思決定がしやすくなります。また、分析は要素に分解して考えると良いでしょう。具体的に比較する内容を明確にし、より良い意思決定を支援します。 自立した分析をどう支援する? 私は分析チームのマネジメントを担当しており、各部門の分析支援において主に分析計画の確認と承認を行っています。分析の依頼を受けるにあたって、依頼内容をそのまま受け入れるのではなく、各部門が自立して分析を行えるようサポートすることが求められます。また、分析実務では、計画通りに進められているか、目的に沿って比較が明確に行われているかを確認し、より良い表現を習得したいと考えています。この経験を、今後の分析計画や実務に活かしていきたいと思います。 どのように分析計画を進めるべき? 分析計画では、依頼内容をそのまま受けるのではなく、分析の目的をしっかりと確認し、要素に分解して比較項目を定めます。何を明らかにすべきか仮説を立て、データの収集、加工、評価を行います。さらに、比較項目以外の条件統一も意識します。また、目的を確認せずに分析実務に入らないよう留意します。分析実務では、目的に沿って明確な比較ができているか、また、読者を考慮したグラフなどの表現を適切に行うよう心がけます。

データ・アナリティクス入門

問題解決で差がつく!実践の一歩

問題解決の重要性とは? 問題を特定し、要素を分解することについて、普段の業務ではそれほど深く考えず、安易に解決方法を決めてしまっていると痛感しました。問題箇所を解決した場合の理想像への影響度を検討することは重要であり、これは顧客への提案時にそのまま費用対効果として役立ちます。その結果、より効果的で説得力のある提案ができるようになると感じました。 理想像の共有方法は? また、理想像を定量的に判断できる指標として変換し、関係者と合意することも重要です。最初の問題設定で認識のズレが生じると、後からプロジェクトの方針が社内外の関係者と異なってしまうことがあります。今後は、認識のズレが起こらないように注意して取り組みたいと思います。 認識のズレをなくすには? 問題点や課題の設定を誤る場面が多いことに気づきました。社内の関係者間でも微妙に異なる捉え方をしているケースがあるため、理想像を定量的に指標化し、関係者と合意することを今後の業務で活用したいと考えています。 DX化推進での課題は? さらに、企業のDX化を推進する場面では、「どこに問題があるのか」や「なぜ問題が起きたのか」で、「人間の質」が問題となることが多々あります。これまではそのような問題に対する解決方法を提案することが難しかったのですが、今後は問題をさらに深く分解し、捉え方を変えることで解決策が見つかるかもしれないと思いました。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

データ・アナリティクス入門

経営者気分で学ぶ仮説解決術

データと仮説でどう考える? これまでの総復習を通して、まずデータを用いて問題の所在を読み解き、原因を仮説思考で考察し、その上で対策を検討するフレームワークを再確認できました。どんな状況においても、ロジカルに物事をとらえ、データを基に仮説を立てることで問題解決の道筋を描く大切さを強く実感しました。 なぜ一貫性が感じられる? また、ストーリー全体に一貫性があり、学びの流れが頭にしっかりと残りました。経営者になった気分で対策を検討できたことも、非常に印象に残っています。 マーケ実践はどう進む? マーケティングの分野では、日頃の活動にデータドリブンな視点を取り入れることで、施策の有効性の比較、優先順位の設定、費用対効果や効果の見通しなど、具体的な対策を実行に移す自信が持てました。施策の判断軸となる評価項目や様式を統一することで、正しい比較ができる点も大変有用だと感じました。 病院DXで何を改善? 一方で、病院のDX推進においては、導入率のトラッキングや向上施策、トレーニングの立案など、データに基づいた仮説と検証を繰り返す取り組みが今後の課題となると同時に、実践的な対策として役立つと考えています。目的を明確にし、過不足なくデータを収集、複数のメンバーと多角的な視点で仮説をたて検証することで、事前に設定した評価項目を使いながら、効果を正確に測る仕組みを構築する重要性を再認識しました。

データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

データ・アナリティクス入門

データ分析力で未来を切り拓く

比較で何を探る? 「分析とは比較なり」という言葉が示すように、分析を行う際には、条件を整えて比較し仮説を立てることが重要です。この手法は、日常的にデータを扱う作業の中で非常に役立っています。例えば、全国推奨品になった製品のシェアが推奨される前後でどの程度伸びているのか、値下げ要求に応じた場合に売上がコストダウンのインパクト以上に増加したかどうかなどの質問です。 目的と条件はどう? 分析を始める前に、分析の目的とデータの条件がしっかりと整っているかを確認します。目的がはっきりしていなければ、分析結果は曖昧になり、有益ではなくなってしまいます。また、「生存者バイアス」という思考に陥らないように、成功体験だけでなく失敗からも学ぶ意識を持ち続けたいと思います。たとえば、競合との製品コンペに勝つためには過去の成功事例から学ぶだけでなく、敗北したケースの反省点を検討し、どこが競合よりも劣っていたのかを追求していくことが重要です。 データの見せ方は? さらに、データの見せ方も大切です。数字やパーセンテージで示すべきか、どのようなグラフを使用するかを考え、視覚的に訴える効果的な方法を選択することが求められます。こうした分析の技法や思考法は、データを扱う日々の作業の中で重要な役割を果たします。ファクトに基づいた正確な分析結果を出し、それを適切に伝えられるように努めていきたいと思います。

データ・アナリティクス入門

ナノ単科で得た経営戦略と実践の理解

経営戦略の学習の価値は? ナノ単科を受講して、私は多くの学びを得ることができました。特に、経営戦略の構築や実行に関する具体的な知識やスキルを体系的に学べた点が非常に有益でした。これまで独学で得た知識との違いを実感することができ、理解が深まりました。 理論と実践の融合をどう感じた? 授業の進行は非常にスムーズで、講師の説明も分かりやすかったです。特に理論だけでなく、実際の事例を用いた説明が、現実のビジネスシーンでの適用をイメージしやすくしてくれました。これにより、理論が単なる知識としてではなく、実際の業務にどう繋がるかを理解することができました。 ディスカッションの意義とは? また、他の受講生とのディスカッションも非常に有意義でした。異なる業界や職種の視点からの意見を聞くことで、自分の考えに新たな視点を加えることができ、知識の幅が広がりました。これらの交流を通じて得た学びは、今後のキャリアにおいて大いに役立つものと確信しています。 オンライン学習の利便性をどう活かす? さらに、オンラインでの受講環境も優れており、自分のペースで学習を進めることができました。これにより、仕事と学習の両立がしやすく、効率的に勉強を続けることができました。 ナノ単科で得られた成長とは? 総じて、ナノ単科での学びは非常に充実しており、今後もさらなる成長を求めて学び続ける意欲が湧いてきました。

データ・アナリティクス入門

全体を捉える問題解決のヒント

プロセスはどう見る? 問題解決のプロセスは曖昧な実施ではなく、明確に意識しながら進めていく必要があると感じています。ありたい姿と現状のギャップを把握し、単に発生した問題のみを解決するのではなく、全体を俯瞰して問題を特定することが重要だと思います。 何が問題の核心? 【What】:まず、ありたい姿と現状のギャップを正確に捉えること。加えて、全体の中から問題を特定し、対処療法に終始しないよう意識することが求められます。 【Why】:再発防止を見据えた要因分析が十分に行われ、単に問題の裏返しになった解決策に留まっていないかを確認することが肝心です。 【How】:グループメンバー全員がこのプロセスを意識し、行動に移せるかどうかも大切なポイントです。 会議の進めはどう? また、社内会議で問題の共有を行う際には、現在どのプロセスのステータスにあるのかを明確に意識し、視覚化した議論ができるようファシリテーションを心がけたいと考えています。オンライン会議など参加者の理解度が不明な状況では、イメージしやすい議論の進め方が一層重要になります。 データ活用の秘訣は? さらに、定量分析の書籍を通じて学んだ知識を復習し、データ分析における具体的な分析式などの例を自分の引き出しに加えたいと思います。その知識を業務資料に活用することで、社内のデータアナリティクス推進にも貢献したいと考えています。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right