データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

データ・アナリティクス入門

ひらめきと検証、学びのワクワク旅

仮説とは何だろう? 仮説とは、ある論点に対する仮の答えや、まだ十分に理解できていないことに対する仮の答えのことです。目的に応じて、結論の仮説と、具体的な問題解決を推進するためのプロセスに沿った問題解決の仮説に分類されます。 なぜ複数を検討する? 仮説を考える際は、まず複数の仮説を立て、ひとつに固執しないことが重要です。異なる視点から複数の切り口を用意することで、網羅性のある考察が可能となります。 どの要素を比べる? また、検証の際には、どの要素を比較するのかという意図を明確にしながら進めることが肝心です。単に何となく比較するのではなく、仮説に対する反論に対応できるよう、比較対象となるデータを計画的に収集してください。データ収集時には、誰に、どのように質問するかが回答結果に影響する点にも留意する必要があります。 どうデータを公平に扱う? さらに、検証データを集める際は、自身の都合の良いデータだけに依存せず、フラットな気持ちで客観的にデータを扱いましょう。説明資料を作成する際には、想定される反論やコメントにも対応できるよう、十分な根拠となるデータを盛り込むことが求められます。 検証習慣はどうある? 日頃から、仮説とそれを裏付けるために必要なデータの関係性を意識し、どのようなデータがあれば検証に役立つのかをセットで考えておく習慣を身につけることが、効果的な問題解決に繋がるでしょう。

データ・アナリティクス入門

A/Bテストで広告効果を最大化する方法

論理的思考の極意は? 「What」「Where」「Why」「How」の視点で物事を考える重要性を学びました。実践演習を通じて、A/Bテストを活用し、ターゲット層をグループ化して効果のあるかどうかを仮説を立てて検証するプロセスが重要であることを実感しました。また、コストや意思疎通、スピードなどを考慮して、外注か自社のデザイナーに任せるのか、またはAIに広告の表示を任せるかを判断する必要性にも気づきました。 広告の効果は見えてる? 自社でもYouTuberとのコラボ商品を展開していますが、それが実際にコンバージョンにつながっているかを検証することの重要性を感じました。ソーシャルメディアのユーザーごとの年齢や趣味を考慮しないと、ターゲット層と商品の間に乖離が生じ、購入につながらない可能性があると考え、A/Bテストを用いて広告の比較検討を行うことが非常に重要であると感じました。 クリック数は信頼できる? 普段何気なく見ているYouTubeチャンネルやInstagramなどのプラットフォームに表示されている広告が実際にクリックされる広告なのかを検証し、自社の広告もそのように費用対効果を考慮し、スピードやコスト、意思疎通などを考えて表示することを実践したいと思います。また、自社はテレビドラマとのコラボ商品が多いため、テレビの視聴率や視聴者に対して効果的なコンバージョンへの検証を進めていきたいです。

データ・アナリティクス入門

比較で解く!データ分析の秘訣

分析の重要性を理解する 「分析とは比較なり」ということを理解することができました。比較対象が存在しないと、分析が適切かどうかを判断したり、報告相手に納得してもらうような報告ができないと感じました。比較する際には、同じ条件のものを正しく選ぶことが重要であることも学びました。また、データの種類や内容に応じて、効果的に見せる方法を使うことで、報告相手への説得力を高められることも理解しました。これからは、分析結果やデータの種類に応じた適切な見せ方を習得していきたいと思います。 データ比較の実践方法は? 交通系ICカードの決済実績やポイント付与キャンペーンの実績において、前年やキャンペーン開始前のデータと比較し、どのように変化しているか、キャンペーン効果がどう出ているかを分析し、効果を測定したいと考えています。また、分析結果を円グラフや棒グラフ、折れ線グラフを使ってわかりやすく示し、説得力を高めて伝える方法にも意識を向けたいです。 スキル向上への取り組み まずはナノ単科で学んだ内容をしっかりと身に付け、一つでも多く自分のものにしていくことを目指します。そして日々のデータ分析業務において「分析とは比較なり」を心掛け、問題点や課題を正確に把握し、比較分析を徹底するとともに、説得力があり理解しやすいアウトプットを実践していきたいです。そのために必要なエクセルやパワーポイントのスキルを勉強し、磨いていきます。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

データ・アナリティクス入門

売上2割減に挑む!論理的思考で解決へ

ライブ授業から得た教訓は? ライブ授業で取り上げられた「売上昨対2割減」に向き合う例題についての感想です。このようなオーソドックスな例題に対して、何を知りたいか、どのように仮説を立てるかを考える際、必要な情報を十分に洗い出すことができませんでした。また、適切なグラフを思い浮かべることもできず、ビジュアル化に苦慮しました。しかし、「やみくもに分析しない」「ストーリーを大事にする」という前提は常に意識しています。こうした困難に直面しないよう、フレームワークや論理的思考、分析のための関連情報について日々インプットを続け、実践に活かせるようにしておかなければなりません。 赤字解消に向けた第一歩は? 現在、自部門が赤字という現実に直面しています。まずは実績を集計し、現場のメンバーにもヒアリングしながら情報を集め、自分なりの仮説を明確化することから始めます。そして、4つのステップで分析し、解決に向けて取り組んでいきます。フレームワークを活用し、経験や勘に頼らない形で、フラットに考えながら取り組むつもりです。 チームの協力で問題を解決? 早急に解決が求められる問題のため、迅速に対策を講じます。データ集計の際は、自身の目で確認するだけでなく、メンバーの協力を得ながら多角的にデータを収集します。講座で学んだ内容をチーム内で共有し、部門の問題について関係者とともに仮説を立て、解決策を見つける努力を続けます。

データ・アナリティクス入門

実践で納得!A/Bテストの極意

A/Bテストって何? A/Bテストの実施方法がとても参考になりました。まず、目的を明確に設定した上で、テスト期間や条件をできるだけ統一し、一つの要素に絞ってテストを行う重要性を学びました。これまであまり理解していなかった点を、具体的な説明を受けながらしっかりと納得することができました。 仮説の検証はどう? また、仮説を立ててテストを行い、その検証を実施した後、もし仮説が間違っている場合はなぜそうなったのかを考察することの必要性にも気づかされました。これらの学びは、今後の業務にぜひ活かしていきたいと考えています。 広告効果はどこで? 弊社ではクリスマスシーズンによくWeb広告を実施していますが、その際にA/Bテストを行うことで、広告の成果を向上させることができるのではないかと思います。特に、効果的な文言を選定する点では、コストも低く簡単に実施できるため、今年のクリスマスキャンペーンで取り入れてみたいと考えています。 チームでどう動く? 具体的には、まずチーム内でA/Bテストの概要を共有し、昨年度の広告で使用したビジュアルや文言を振り返りました。その上で、今年のキャンペーンでは複数のパターンのデザインや文言を用意することを提案する予定です。また、正確なデータを得るために、どのくらいの規模のオーディエンスに対してテストを行えばよいかについても、さらに調べて学びたいと思います。

データ・アナリティクス入門

分析の魔法: 自立したアプローチへの道

分析の目的は何を考えるべきか? 分析に取り組む際には、最初に目的の確認と仮説を立てることが重要です。適切に比較するためには、比較項目以外の条件を統一することで、意思決定がしやすくなります。また、分析は要素に分解して考えると良いでしょう。具体的に比較する内容を明確にし、より良い意思決定を支援します。 自立した分析をどう支援する? 私は分析チームのマネジメントを担当しており、各部門の分析支援において主に分析計画の確認と承認を行っています。分析の依頼を受けるにあたって、依頼内容をそのまま受け入れるのではなく、各部門が自立して分析を行えるようサポートすることが求められます。また、分析実務では、計画通りに進められているか、目的に沿って比較が明確に行われているかを確認し、より良い表現を習得したいと考えています。この経験を、今後の分析計画や実務に活かしていきたいと思います。 どのように分析計画を進めるべき? 分析計画では、依頼内容をそのまま受けるのではなく、分析の目的をしっかりと確認し、要素に分解して比較項目を定めます。何を明らかにすべきか仮説を立て、データの収集、加工、評価を行います。さらに、比較項目以外の条件統一も意識します。また、目的を確認せずに分析実務に入らないよう留意します。分析実務では、目的に沿って明確な比較ができているか、また、読者を考慮したグラフなどの表現を適切に行うよう心がけます。

データ・アナリティクス入門

問題解決で差がつく!実践の一歩

問題解決の重要性とは? 問題を特定し、要素を分解することについて、普段の業務ではそれほど深く考えず、安易に解決方法を決めてしまっていると痛感しました。問題箇所を解決した場合の理想像への影響度を検討することは重要であり、これは顧客への提案時にそのまま費用対効果として役立ちます。その結果、より効果的で説得力のある提案ができるようになると感じました。 理想像の共有方法は? また、理想像を定量的に判断できる指標として変換し、関係者と合意することも重要です。最初の問題設定で認識のズレが生じると、後からプロジェクトの方針が社内外の関係者と異なってしまうことがあります。今後は、認識のズレが起こらないように注意して取り組みたいと思います。 認識のズレをなくすには? 問題点や課題の設定を誤る場面が多いことに気づきました。社内の関係者間でも微妙に異なる捉え方をしているケースがあるため、理想像を定量的に指標化し、関係者と合意することを今後の業務で活用したいと考えています。 DX化推進での課題は? さらに、企業のDX化を推進する場面では、「どこに問題があるのか」や「なぜ問題が起きたのか」で、「人間の質」が問題となることが多々あります。これまではそのような問題に対する解決方法を提案することが難しかったのですが、今後は問題をさらに深く分解し、捉え方を変えることで解決策が見つかるかもしれないと思いました。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

データ・アナリティクス入門

ナノ単科で得た経営戦略と実践の理解

経営戦略の学習の価値は? ナノ単科を受講して、私は多くの学びを得ることができました。特に、経営戦略の構築や実行に関する具体的な知識やスキルを体系的に学べた点が非常に有益でした。これまで独学で得た知識との違いを実感することができ、理解が深まりました。 理論と実践の融合をどう感じた? 授業の進行は非常にスムーズで、講師の説明も分かりやすかったです。特に理論だけでなく、実際の事例を用いた説明が、現実のビジネスシーンでの適用をイメージしやすくしてくれました。これにより、理論が単なる知識としてではなく、実際の業務にどう繋がるかを理解することができました。 ディスカッションの意義とは? また、他の受講生とのディスカッションも非常に有意義でした。異なる業界や職種の視点からの意見を聞くことで、自分の考えに新たな視点を加えることができ、知識の幅が広がりました。これらの交流を通じて得た学びは、今後のキャリアにおいて大いに役立つものと確信しています。 オンライン学習の利便性をどう活かす? さらに、オンラインでの受講環境も優れており、自分のペースで学習を進めることができました。これにより、仕事と学習の両立がしやすく、効率的に勉強を続けることができました。 ナノ単科で得られた成長とは? 総じて、ナノ単科での学びは非常に充実しており、今後もさらなる成長を求めて学び続ける意欲が湧いてきました。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right