データ・アナリティクス入門

原価分析で挑む学びの力

学びの成果は何か? 全体を振り返ると、学んだ内容について、しっかり理解できた部分と、まだ定着が十分でない部分があると感じました。本コースで学習した知識を、繰り返しの学習と実践を通じて自分のスキルとして定着させるため、今後も継続的に取り組んでいきたいと思います。 原価分析の活用は? また、現在従事している原価分析の業務において、今回習得した分析手法を活かしていきたいと考えています。自社の原価から浮かび上がる課題や、原価算出方法における問題点を、自分なりに洗い出し、経営陣へ根拠を持った提案を行うことで、業務の改善につなげていきたいと思います。

データ・アナリティクス入門

一人じゃ見えないチームの力

一人分析はどんな落とし穴? 課題に対して自分ひとりで分析を実施すると、見落としや重複が生じ、MECEが保たれなくなる恐れがあると感じました。そこで、分析の前段階で依頼者や他社と情報整理を共有し、確認しながら進めることが有効ではないかと思います。 フレーム活用で目標達成は? また、ロジックツリーやその他のフレームワークを活用することで、製品の売上目標達成に向けた現状分析や必要なアクションの抽出に役立つと考えます。現状の情報整理や今後のアクション計画について、関係者と相談しながら、実施可能な施策を具体的に検討していくことが重要だと実感しました。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

データ・アナリティクス入門

偏差値から広がる分布分析

データの視点は何? データは数字、グラフ、そして数式という3つの視点から捉えることができます。数字の場合、代表値と分布の両面から情報を集約しますが、件数の多いデータを比較する際は、必ず分布の違いも考慮する必要があります。一方、数式では回帰分析とモデル化の手法が用いられます。 標準偏差の可能性は? 学生時代には偏差値を通じて標準偏差を知りましたが、営業成績の分布について考察する際に、数字やグラフから確認していたものの、実際に標準偏差を活用する経験はありませんでした。そこで、今後は標準偏差を用いた分布分析に挑戦してみたいと思います。

データ・アナリティクス入門

疑問とメモから生まれる成長

売れなかった理由は? 営業の現場で長年経験を積むと、なぜ今日売れなかったのか、何が顧客に対して良くなかったのかといった疑問が浮かぶことが多くなります。こうした考察をそのままメモに記録することで、問題意識を持ち、仮説思考へと展開できると感じています。一方で、十分に検証できていない点が自分にとっての課題であるとも思いました。 検証と成長の道は? 日々の気づきをメモし、AIなどのツールを活用して要点を整理する。そこから見えてくる仮説に基づき、1ヶ月、2週間、あるいは毎日という期間で検証のスピードを上げ、実践していきたいと考えています。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

データ・アナリティクス入門

多角視点で捉えるデータの魅力

データ理解の原点は? 今週は、データの理解を出発点とする学習に取り組みました。データとは、ひとつの側面だけでなく多角的に捉えるべきものであり、個人的な偏りを排して客観的に扱う難しさがあると感じました。 判断の落とし穴は? また、データそのものの意味を正確に把握することと同様に、データを活用する目的を明確にすることも非常に重要だと思いました。迅速かつ効率的な業務が求められる場面では、あまりにも素早く判断しようとすると、過去の経験や似た事例に頼りがちになり、その結果、重要な要素を見落としてしまうリスクがあると実感しました。

データ・アナリティクス入門

仮説で切り拓く実務の未来

定量分析の注意点は? 定量分析を実施する際に注意すべき5つのポイントについて学び、その重要性を実感しました。また、分析前の仮説の立て方がその後の結果に大きな影響を与えることから、仮説設定も慎重に行う必要があると感じました。 学びを実務に生かす? 学んだ知識は、長期的な実績変動の振り返りや今後の活動プランの策定など、実務での活用が期待できると感じています。具体的には、過去の振り返りに定量分析を行い、今後のプラン立案の際は仮説を設定した上で、必要に応じて再度分析を実施するというアクションプランのイメージが明確になりました。

データ・アナリティクス入門

目的と仮説で描く成功戦略

目的はどう設定? これまでの学習を振り返り、分析作業に入る前に目的と仮説を立てるプロセスがいかに重要かを再認識しました。また、問題解決に向けて「What、Where、Why、How」の4ステップに沿って進める手法が印象的でした。 業務にどう生かす? 普段の業務においても、まずは問題解決のストーリーをしっかりと組み立て、その上で分析を進めることを意識して取り組みたいと考えています。今後は、各種フレームワークを活用しながら論理的な思考力の向上に努め、より迅速に多くの施策のPDCAサイクルを回していくことを目指します。

データ・アナリティクス入門

ひと工夫で伝わる説得力

どうして結果が違う? 同じデータでも、どの切り口で処理するかによって得られる結果や示唆は大きく変わることを実感しました。 どうやって説得する? また、単にクオリティの高い分析を行うだけでなく、分析結果をもって相手を納得させるための説得力あるアウトプット作成が重要だと感じています。 伝え方は正しく? さらに、業務においては分析を実施するだけでなく、その結果を踏まえて伝えたい内容を納得のいく形で資料化することが求められます。本講座で学んだ図解の手法を活かし、読み手に違和感のない成果物作成に努めたいと思います。

データ・アナリティクス入門

仲間と共に広がる発見の輪

異なる視点になぜ注目? グループワークを通して、自分では気付かなかった切り口や別の視点からの意見を得ることができ、その重要性を実感しました。一人で考えるよりも、多角的なアプローチで知見を広げることが大切だと感じています。 多角的整理の意義は? また、個人で企画や分析を進める際には、フレームワークを活用し、抜け漏れなく複数の視点から情報を整理することを意識したいと思います。特定の仮説に固執せず、他部署の意見や異なる分野の知見を取り入れることで、より幅広い視野に立った判断ができるように努めたいと考えています。

データ・アナリティクス入門

多角的仮説で導く最適解への道

仮説をどう見極める? 私は、思い込みや決め打ちで仮説を立てるのではなく、複数の仮説を比較するためのデータを適切に収集することの重要性を学びました。各種フレームワークを活用することで、分析に説得力を持たせることができると考えています。 ITの課題解決は? また、ITを通じて顧客に提供する際には、不具合の原因調査や課題解決に対して様々な解決法が存在することが分かりました。そのため、フレームワークを用いて複数の仮説を網羅的に整理することで、その場に応じた最適な結論を導き出すことができると感じています。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right