データ・アナリティクス入門

データに隠れた学びの宝石

代表値の役割は? 今回の学習では、数字と数式における代表値とばらつきの概念を学びました。代表値では、平均値、加重平均値、幾何平均値、中央値、最頻値という各種の指標の使い分けを学ぶとともに、平均値の弱点についても理解を深めました。 ばらつきの意味は? また、ばらつきを示す指標として、分散と標準偏差があることを学びました。これらの指標を使うことで、単に中心傾向を示すだけでなく、データ全体の分布やばらつきの様子を具体的に把握できるようになりました。 実践でどう活用? 今後は、日常的なデータ分析において、平均値だけでなく、加重平均値や中央値などの代表値を適切に使い分け、さらに必要に応じて分散や標準偏差も活用することで、より豊かな情報の抽出を目指していきたいと思います。

データ・アナリティクス入門

Excel実践で磨くデータ思考

データ分析の意味は? データ分析では、比較と独自の観点が価値を生むと感じました。基本的な内容でありながら、Excelでの実践的な手法を学ぶ中で、自分の思考プロセスが整理され、視野が広がったと実感しています。 フレームワーク活用の秘訣は? 今回学んだフレームワーク、たとえばファネル分析や3C、4Pなどを中心に活用したいと考えています。定期的に振り返りを行うことで、より効果的な比較ができるよう意識して取り組むつもりです。 転職後の展望は? さらに、業務においても今回の学びを基礎として活用します。今後、データマーケティング職への転職が決まっているため、壁にぶつかったときは学んだフレームワークや思考プロセスに立ち返り、より広い視野で問題に取り組む方針です。

データ・アナリティクス入門

固定観念を超える仮説の力

仮説の立案法は? 仮説を網羅的に立てる作業は、容易ではないと実感しました。経験や知識が豊富なときこそ、仮説が固定化されやすく、視野が狭くなってしまうと感じています。そんな中、フレームワークを活用することで、問題を広い視点から俯瞰し、多角的に検討できる大切さを再認識しました。 次の一手は? また、仮説を明確にすることで、次に取るべきアクションが見えやすくなると感じました。知識や経験に頼って決め打ちの仮説に陥らないよう注意し、さまざまな角度から検証することが重要です。データ収集の際も、仮説を裏付ける都合の良い情報だけでなく、他の可能性を排除するためのデータも集める必要性を学びました。そうすることで、説得力ある検証ができ、後からの手戻りを防ぐことにつながると感じています。

データ・アナリティクス入門

実務に繋がる問題解決ストーリー

問題解決の基本は? 今回の総合演習では、「問題の明確化→問題箇所の特定→原因の分析→解決策の立案」という基本プロセスに立ち返り、学習に取り組むことができました。また、解決策を検討する際には複数の選択肢を洗い出し、それぞれの根拠をもって評価することをあらためて意識しました。とはいえ、実務で実際に取り組む際には、まだ自然に活用できていない部分もあるため、クラス終了後も学んだことを繰り返し復習する努力が必要だと感じました。 実務への活用はどう? 私の担当業務ではA/Bテストの利用が難しいと感じる一方で、今回のナノ単科を通じて知識こそが武器であると改めて実感しました。今後、活用の機会が訪れた際には、今回得た知識をしっかりと身につけ、実務に積極的に生かしていきたいと思います。

データ・アナリティクス入門

仮説検証で磨く伝わる分析術

どんな学びがあった? 今回の学習を通じて、自分の不足点や修正すべき点を改めて確認することができました。 仮説検証は十分? まず、仮説を検証する過程で、データの取得や加工は行ってきたものの、否定的な視点からその仮説が正しいかどうかを十分に検証する必要があると感じました。次に、分析時には適切なフレームワークの活用が重要であると再認識しました。さらに、結論をまとめた際、相手に正しく情報を伝えるために、グラフなどの視覚資料の選び方や説明の仕方が大きく影響することも学びました。 改善に向けて何? これらの学びを生かし、今後は自己の課題や修正点に注意しながら、分析や報告の方法を工夫していくことで、上司の理解や納得を得られる報告資料を作成していきたいと考えています。

データ・アナリティクス入門

数字とフレームが紡ぐ説得の力

数値の感覚はどう役立つ? 動画学習を通して、どのような数値が必要になるのかという仮説を立てる際、普段から数値に触れておくことの重要性を実感しました。数字への苦手意識を払拭し、常に数値の感覚を養うことが説得力のある説明や資料作成に繋がると感じています。 フレームワークの活用は? また、適切なタイミングでフレームワークを活用することの意義も強く感じました。使い慣れたフレームワークを用いることで、頭の中で必要な数値情報が整理され、仮説検証の過程が直観的に理解しやすくなると思います。 企画書はどう創れる? 今後は、企画書や提案資料の作成において、代表的なフレームワークを意識的に取り入れることで、より論理的で説得力のあるアウトプットを目指していきたいと考えています。

データ・アナリティクス入門

新たな視点で未来を切り拓く

分析の目的は何? 分析の目的や検証したい仮説を明確にすることで、アウトプットの内容が大きく変わると感じました。いきなり分析に着手するのではなく、どの切り口を採用するかを検討することで、分析の精度が向上すると実感しています。 新たな視点はどう捉える? これまで、売上データの分析など同じ流れで進めてきた結果、似たようなアウトプットになっているという課題がありました。そのため、今後は新たな視点を導入し、自分自身やチームのメンバーが新しい気づきを得られるよう意識していきます。 バイアスをどう排除する? また、従来のバイアスをできる限り排除する分析手法と、その結果をチーム全体で共有する取り組みを進め、具体的な施策につなげられるよう努めていきたいと考えています。

データ・アナリティクス入門

繰り返しが未来を拓く瞬間

学んだ内容はどう定着? 講義中に出されたお題に対して瞬時に回答できなかったことから、まだ学んだ内容が完全に定着していないと実感しました。今後は、習得した知識をしっかり根付かせるために、何度も実践を重ねることが大切であると感じています。 目的はどう明確になる? また、目的を明確にすることで、フレームワークの構築や仮説の立案がより効果的に行えると理解しました。今後は、営業成績を伸ばすために必要な取り組みや改善点を丁寧に考察していく所存です。 分析結果はどう共有? 現在、エリアを二名で担当している立場から、自分が分析・考察した内容を担当者同士で共有し、互いに意見を交わしながら修正を繰り返すことで、より実践的な知識の定着と成果の向上を目指していきたいと思います。

データ・アナリティクス入門

学び再発見で未来を切り拓く

録画視聴で感じた? ライブ授業に参加できず、録画で視聴したのは残念でしたが、その分多くの学びを得ることができました。改めて学習内容を振り返る中で、特に初期の学習で理解しきれなかった点に気づき、再度講義を視聴することでしっかりと習得できたと感じています。 次のデータ活用は? 今後は、月次実績やWEBマーケティングで抽出したデータを活用し、組織の成長と拡大につなげる取り組みを進めたいと考えています。また、そこで得た学びや気づきを生かして新たな取り組みや施策の提案を行い、事業の拡大に寄与していく所存です。 戦略の再検討は? ちょうど期末から期初にかけたタイミングであるため、前期の課題や次期の計画と関連づけた分析を実施し、今後の戦略を立てていく予定です。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

データ・アナリティクス入門

平均の罠と中央値のひみつ

代表値はどう決める? 過去に単純平均や中央値を扱った経験はありますが、その意味合いまで十分に考慮していなかったと感じています。データの集団同士を比較する際、代表値として何が適切かを選ぶ必要があることを改めて認識しました。特に、年収などのデータでは極端な値が存在する場合、平均値がその値に引っ張られるリスクがあるため、グラフなどで可視化することが重要だと考えます。 KPI評価はどうする? また、営業活動のKPIを組織や個人単位で評価する場合、単純平均ではなく中央値で比較する方法を検討しています。これは、ごく一部の外れ値や大型案件の影響を排除するためです。さらに、年度末までの目標達成に必要な成長率については、幾何平均を用いて算出できそうだという印象を持ちました。

データ・アナリティクス入門

実践と数字で磨く学びの軌跡

テスト条件はどう? ABテストの留意点として、テスト期間は同一にし、その他の要素は変更しないことが重要だと強調されています。これは、結果の信頼性と比較可能性を担保するために欠かせないポイントです。 数字の根拠は? また、総合演習課題では、根拠としてどの数字を用いるのが最も説得力があるかを考える点が印象的でした。さらに、課題に対しては複数の仮説を網羅的に立て、実際の検証を重ねていくことで、真の課題に迫るアプローチが求められます。 最適解はどう選ぶ? 加えて、サービス企画においては迅速かつ効率的に最善策を選び出すことが重要であり、開発者との連携の中で必要な局面にABテストを活用することで、より効果的なサービスリリースにつながると感じました。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right