デザイン思考入門

体験で見える!サービス改善のヒント

どうして金融調査? 金融関連の業務を担当するにあたり、まずは競合調査の一環として、顧客満足度上位の企業のwebページを確認しました。調査項目は、サービス内容、金利、セキュリティ対策の三点です。 なぜ実際に試す? 担当クライアントは、顧客満足度においてサポート部門がトップである一方、web・アプリ部門では3位という評価でした。UIおよびUXの強化を目指すため、実際に口座を開設し、サービスを体験することにしました。 体験中の違和感は? 口座開設のプロセスでは、窓口での対応とweb上でのマイナンバーカードによる審査を利用し、手続きは2日ほどで完了しました。全体的にスムーズでストレスを感じることはほとんどなく、スマートフォンを使った顔認識に関しては、背景に余計なものが映らないようにするためか、認識に少し時間がかかりました。 営業メールの謎は? 一方、口座開設後は、毎週のようにメールでの営業連絡が送られてきました。そのため、金利に基づく金額の通知が他の営業メールに埋もれてしまい、見逃されることがあるという印象を持ちました。 改善要求の真意は? クライアントからはUIおよびUXの改善依頼があり、提供された情報だけで対策を検討していた状況に不安も感じました。実際にサービスを利用しなければ気づけなかった問題点について、担当者間で共有しています。たとえば、営業メールの配信頻度を隔週に変更することや、メールタイトルに【レポート】やサービス名を含めることで、ユーザーが利用状況を一目で把握できるようにする提案を考えています。

デザイン思考入門

生成AIで顧客共感の新境地

どうしてペルソナが鍵? 生成AIのビジネス活用支援の立場から、生成AIの利用方法について考えました。自ら生成AIをどのように活用するかを検討し、実際の運用で示された課題を把握することは可能です。しかし、利用するお客様ごとに使用シーンや前提知識、目的が異なるため、彼らに共感し課題を正しく理解するには、ペルソナをしっかり定義し、その前提条件や目的、状況を想像して整理する必要があります。 顧客役割シミュレーションは? また、生成AIに顧客の役割を模倣してシミュレーションしてもらう手法も有効だと考えます。ペルソナで定義したユーザーとして課題を提示してもらうことで、要件定義のプロセスに新たな視点を加えることができるため、実践的な検討に大変役立ちました。 利用後の効果は何? 実際に利用してみると、生成AIからユーザー役として現実に即した質問が提起され、単なる想像にとどまらない網羅的な事前検討ができることが確認されました。従来、ユーザーを実際に巻き込む場合、コストがかかるという課題がありましたが、生成AIを用いることで低コストで実務に近いシミュレーションが可能となり、非常に参考になりました。 今後の展望はどう? 今後は、生成AIを活用してより具体的なユーザー視点からの課題提起やシミュレーションを実践し、顧客との共感を深める戦略に活かしていきたいと考えています。さらに、生成AIを使うことでペルソナの理解がどのように進むか、またそのシミュレーション結果をどのようにビジネス戦略に反映させるかについても、今後の課題として具体的に検討していく所存です。

アカウンティング入門

5つの利益を直感的に理解する旅

P/Lの基本を理解するには? 損益計算書(P/L)の見方や5つの利益の関係について、講義を通して自社のP/Lを確認することで、大まかな理解が進み、頭の整理ができました。特に、大まかに要点を捉える方法が大変参考になりました。また、実践演習を通じて、5つの利益に繋がる具体的な構成要素についての理解を深めることができました。 営業利益を上げる方法とは? 特に、営業利益の数字を上げるために、安易にスタッフの削減などで販管費を下げるのではなく、week1で学んだ「顧客と提供価値」のコンセプトを意識し、顧客への提供価値の質を維持しつつ、全体を俯瞰しながら販管費を下げる方法を考えることが重要だと理解しました。 営業利益と当期純利益の要素は? 自社の損益計算書を確認し、営業利益や当期純利益に影響を与えている要素が何かを把握することが必要です。販管費や特別損失などの内容を財務諸表作成部署へ問い合わせ、その内容の妥当性を短期間で判断できるようになりたいと思います。 決算結果の推移をどう見る? また、半期決算の財務諸表を見ながら、5つの利益の対前期、対前年の結果がどう推移しているのか、その要因を具体的に特定し、即座に議論と改善策の検討ができるようにすることを目指しています。 財務諸表をどう活用する? 今後、他社の財務諸表を参照しつつ、5つの利益と各項目の意味を具体的にイメージしながら取り組んでいきたいです。「決算書「分析」超入門2024 100分でわかる!」を活用して、より実践的に理解し、活用できるように努力します。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

リーダーシップ・キャリアビジョン入門

心に響くフィードバックの瞬間

評価面談で何を学んだ? 評価面談のロールプレイを行い、これまで学んだリーダーシップのエッセンスを実際に実践する訓練になりました。フィードバックでは、具体的な事例に基づいた説明や、日々の観察結果をエビデンスとして示すことの重要性を実感しました。また、相手の環境や状況、経歴を踏まえて、成長につながるフィードバックを心がける必要がある点も学びました。 自己評価をどう聞く? まず、被評定者がどのような自己評価に至ったかをじっくりと聞くことが大切だと感じました。傾聴の姿勢を保ちつつ、評価者として自分の意見を明確に伝えることも求められます。さらに、相手の反応や感情を注意深く読み取りながら、結論だけでなくその理由を丁寧に説明し、納得して次の成長につなげられるようにモチベーションを高めることが重要です。互いに期待してよかった点や、さらに伸ばすべき点を共有し、必要な支援についても遠慮なく話せる環境作りが求められます。 学びの活かし方は? また、Q1で学んだことを意識し、今後の評価面談や1対1のミーティングに活かしていきたいと考えています。メンバーのキャリアについても真摯に向き合い、学んだキャリア理論を活用して、各自の価値観や仕事観を理解した上で、強化すべきスキルや今後のローテーションについて一緒に議論していく方針です。自分の願望や実現したい業務内容についても、打ち合わせの場で積極的に伝えていきたいと思います。 勉強時間の工夫は? 最後に、勉強時間の確保のために工夫している点についても、具体的な取り組みや工夫をお聞かせいただけるとありがたいです。

マーケティング入門

プロダクト思考から脱却するマーケ戦略

視点の違いに気づく? マーケティングの基本的な視点を学びました。顧客のニーズを起点に考えることは当然のことですが、今回のワークを通じて、自分がプロダクト思考に傾いていることに気づかされました。今後は、自分のマーケティング思考を「市場環境や顧客の状況、強み、弱みを深く理解し、仮説を立てて検証し、最適な製品・サービスを提供すること」と定義していきます。グループワークでヒット商品についてディスカッションした際、各人が置かれている立場によってヒット商品の捉え方が異なることを感じました。自身の視点にとらわれず、最適なマーケティングができるように心がけたいと思います。 計画はどう組む? 私の仕事は、IT製品・サービスを提供する会社で販売計画を作成し実行することです。現状、プロダクト思考が強く顧客ニーズを起点とした考え方が不足していると感じています。本部からの施策をそのまま実行しがちですが、担当する地域の市場環境や顧客のニーズを捉えた上で計画を立てていけるようにしたいです。そのためには、日々情報を収集する習慣や、市場環境やニーズを調査するスキルが必要だと感じました。 顧客の声はどう? 重点顧客については、自分なりの視点で3CやSWOT分析を行い、経営に関連する課題やニーズをヒアリングして顧客ニーズを把握する活動を実施します。また、新聞やシンクタンクの情報を活用して、担当地域の特徴やニーズを理解し、仮説思考の精度を向上させるよう努めます。これらをもとに、現在進行中の販売計画をブラッシュアップし、マーケティング思考に基づく計画に改善していきます。

デザイン思考入門

SCAMPERで広がる多角的発想

アイスブレイクはどうして? 提案の際は、まずアイスブレイクとしてワークショップ形式でアイデア出しを行い、相手の発言を否定せずに思いついたことを記入していました。その後、出されたアイデアに絞って検討を進める流れになりました。 SCAMPER法の効果は? 今回、SCAMPER法については初めて知る機会となりました。従来は「Eliminate:削ぎ落とす」ことに重点を置いていましたが、「Substitute:代用する」や「Put to other uses:転用する」といった視点を活かす機会が十分でなかったと感じています。 評価から何を学ぶ? 後日振り返った際に、ワークショップ形式での意見出しやSCAMPER法を取り入れた点は評価されました。ただし、今後は全ての視点をバランスよく議論に組み込む工夫が必要だというアドバイスを受けました。 効率化は本当に正しい? また、限られた環境で解決しようとする中で、効率化を重視するあまり、組み合わせによって効率がさらに向上する可能性に気づく瞬間もありました。特に、「Adapt:応用する」の視点は分かりやすい一方で、「Combine:組み合わせる」という新たな視点を十分に活用できていなかったと反省しています。 自由な発想は必要? 最後に、子どもの頃に描いた絵のように自由な発想を大切にすること、そしてこれまでの経験がワンパターンになっていないかを常に意識する必要があると実感しました。今回の学びを通じ、効率化を追求しながらも、多角的な視点を持って業務改善に取り組むよう努めたいと思います。

データ・アナリティクス入門

ファネル分析で見える改善の鍵

ファネル分析はどう? 問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。 募集プロセスはどう? 生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。 事例調査はどう? 具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。

戦略思考入門

捨てる覚悟で切り拓く未来

捨てる決断は何故? 戦略や実務的な戦術検討を進める中で、「捨てる」ことの重要性を改めて学びました。不要な要素を選び捨てる際には、利益額など目的となる関数に直結する数値をできるだけ定量的に評価する必要があります。しかし、必ずしもすべての要素にエビデンスとなる数値があるわけではないため、仮説を立てた上で算出することも求められます。また、利益額だけに頼らず、他の視点や将来予測を踏まえて検討することが大切です。その中から、重要なポイントを客観的に絞り込み、最終的には決断する勇気が必要だと感じました。目的となる関数にはトレードオフとなる要素が必ず存在することを認識し、それが何かを明確にした上で、バランスを保ちながら効用を最大化する方針を定め、注力すべき方向性を明確にします。場合によっては、トレードオフの双方を実現する可能性もあるものの、そのためには革新的なアプローチが必要となります。 市場品質の未来は? 一方、私が所属する部門は、自社内で市場品質プロセスのデジタルトランスフォーメーションを推進しています。直接的に事業検討を行っているわけではありませんが、事業の進む先によって市場品質リスクが変動するため、常に最新の情報にアンテナを張り、将来の方向性を予測しています。その予測に基づいて、ケースごとに注力すべき領域を決定し、「捨てるもの」を選定する姿勢で業務に取り組むことを心掛けています。また、市場品質の改善には複数の個別要素が存在するため、これらを分解して仮説を立て、改善効果を見通すことで、注力すべき領域をより明確に特定できると考えています。

データ・アナリティクス入門

プロセスで紐解く成功の鍵

問題の原因は何か? まず、問題の原因をプロセスごとに分けて考える手法は、表示回数、クリック数、申し込み数の比率を提示することで、単に回数が多いという表面的な仮説だけでなく、表示回数に対してクリック数が多い点や、クリックから申し込みへの転換率の高さなど、各段階ごとに比較が可能となり、疑問点が見つかりやすくなると感じました。 対比で何が分かる? また、ある事象を自社とそれ以外といった対となる概念で見ることで、思考の幅を広げ、仮説が出しやすくなるという視点にも共感しました。この方法は、試行錯誤の中で新たな発見につながり、より効果的な改善策を導く手がかりとなると思います。 ABテストの本質は? さらに、ABテストについては、要素を限定して2つの試作品を比較する手法として、検証の目的を明確にし、1要素ずつ慎重にテストを進める必要があると実感しました。特に、環境要因に左右されないように、同時期に実施する点は非常に重要であると考えます。 遅延原因はどう把握する? また、デザイン制作の遅延要因の分析において、プロセスを分ける方法は大変有用だと感じました。理由を分類することで、自分たちの問題なのか、他の要因にあるのかを切り分けながら対策を進められる点に納得しています。 効果的な手法は何か? 最後に、ABテストの進め方を見直す必要性も実感しました。簡易なオンラインテストで漠然とどちらが良いかを判断するのではなく、検証の目的を絞って段階的に実施することで、デザインの改善点を具体的に確認しながら進める手法に大いに可能性を感じました。

データ・アナリティクス入門

問題と向き合う力が未来を拓く

問題解決は何から始まる? 問題解決ステップでは、3つのW(what、where、why)と1つのH(how)を意識して原因を探ります。また、問題を4つのステップに分解し、さらに解決策を細分化して検討する点が特徴です。こうして分解した項目をロジックツリーで整理することで、全体像を視覚的に明示できるメリットがあります。 何故この手法は有効? この手法の強みは、問題解決のプロセスを段階的に整理することで、原因を建設的に示せる点にあります。思いつきや声の大きい意見に頼るのではなく、なぜその問題が発生したのかを共有しやすくなるため、全員が納得しながら前に進むことができます。さらに、解決策についても、アイデアを出して細分化するだけでなく、ロジックツリーで集約することで業務フローを見える化し、メンバー間のタスク実行に大いに役立ちます。 時間軸はどう活かす? なお、講義動画では「when」という要素が取り上げられていませんが、実際の業務フローでは時間軸や優先順位を意識することも重要です。時間軸を考慮することで、いつ行動すべきかが明確になり、作業効率の向上につながります。 現状認識はどう向上? また、どんなに優れた枠組みや手法を知っていても、現状の観察と認知をいかに客観的かつ細部まで把握できるかが、結果の精度に大きく影響します。作業時の時間的制約の中でも、日ごろから現状を正確に認識する習慣を意識することが求められます。さらに、ロジックツリーは、鋭い切り口を見つける訓練としても有効であり、日常的な思考整理に役立てていきたいと感じます。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。
AIコーチング導線バナー

50代に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right