0%
あと3分で読了
point-icon この記事のポイント!
  1. ファネル検証で原因を見極め
  2. 募集プロセスの課題を把握
  3. 事例調査で改善策を導く

ファネル分析はどう?


問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。

募集プロセスはどう?


生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。

事例調査はどう?


具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。
※上記の投稿は、受講生より許可を得て掲載しています。

関連記事

【2025年最新版】ファネルとは?マーケ成功術 external link

人気記事

help icon

ナノ単科とは?

実践につながる基礎スキルを習得するカリキュラム
グロービス経営大学院 単科生制度の、さらにライトなプログラムが登場。
1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。

ナノ単科受講生の声

この記事と同じ科目を受講したナノ単科受講生のリアルな感想をご紹介します。
avatar
R.M
20代 女性 一般社員/職員
受講科目
データ・アナリティクス入門
実践につながる 学習習慣が身に付く 仲間と学び合える

総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。

avatar
A.S
30代 女性
受講科目
データ・アナリティクス入門

良かった点
データ分析の前提の考え方、意識すべきことが体系的に学べた。
違う業種の人の意見が聞けたのも貴重な機会だったと思う。

気になる点
口コミ通りといえばそうだが、想像していたよりも実践的なことは割と少なかった印象がある。
アプリやページの不調があったのが気になった。
また、グループワークはテーマによってグダグダ感が出てしまった時があった。

avatar
Y.M
30代 女性
受講科目
データ・アナリティクス入門
実践につながる わかりやすい モチベーションが上がる

大変有意義な1.5ヶ月でした。データ分析を学びたい!と飛びつきましたが、課題解決スキルが根本的に重要であり、その中でデータ分析がどう活かされるか?の流れを実践とともに学びました。
育児と仕事との学びの両立に苦戦しましたが、なんとか食らいついてよかったです!ありがとうございました。

「データ・アナリティクス入門」を受講した方の学び

データ・アナリティクス入門

ファネル分析で見える改善の鍵

ファネル分析はどう? 問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。 募集プロセスはどう? 生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。 事例調査はどう? 具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。

データ・アナリティクス入門

プロセス分解で見つける問題解決のヒント

原因を見極めるには? ビジネスにおいて、問題の「正しい」原因を特定することはほぼ不可能と言えます。様々な要因が複雑に絡み合っているため、正解を見つけるのは難しいものの、「こんな方向性で問題に取り組めばよいかもしれない」という目途は立つこともあります。問題の原因を明らかにする方法としては、プロセスに分解するアプローチが有効です。 クリック率不足の理由は? 特にWEB手続きを推進する業務では、プロセスで分けてクリック率やコンバージョン率を見ていく考え方がすぐに役立ちそうです。クリック率が低い箇所には、どのように誘導を行うかを検討する必要があります。また、手続き完了率が低い箇所については、説明の文言がわかりにくいのか、コールセンターに電話したいと思われる要因があるのかなど、問題の原因を深掘りする必要があります。 ABテストで改善は? これらのプロセスで分解して得られた情報を基に、クリック率やコンバージョン率が低い部分にはABテストを行い、より良い施策を立てます。さらに、その結果を活用して、データに基づく意思決定を行ったり、他者を説得する材料とすることが重要です。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

データ・アナリティクス入門

購入プロセスを深掘りして見える学び

プロセス分解はどう? 原因の分析では、プロセスに分解することが重要です。商品が購入される際には、生活者は多様なプロセスを経ており、これらのプロセスには様々なパターンがあります。まず、これらのパターンを分類し、さらにプロセスごとに分けて考えると良いでしょう。候補を絞り込む際には、まず広い視点で選択肢を洗い出し、その上で排除する根拠を準備します。 仮説はどう立てる? 原因仮説を立てるときは、思考の範囲を広げることがポイントです。ここで役立つのがフレームワークと対概念の活用です。例えば、3Cフレームワークは自社、競合、顧客の観点から分析します。一方、対概念では競合を超えた広い範囲、例えばカテゴリ市場などで仮説を立てることができます。複数の案を比較・検証する際には、条件を揃えて判断することが求められます。 購入プロセスは? 商品が購入されるプロセスとしては、ブランド力がある場合を除けば、次のような流れがあります。まず、商品が目に留まり(パッケージの印象)、次に興味を引き(パッケージ表面の文言)、さらに商品説明を読んで納得し(手に取る)、最後に購入される(かごに入れる)。購入後、消費者に良い商品体験を提供することでブランドイメージが形成され、繰り返しの購入につながります。リピーターが少ない場合には、この商品体験がプラスイメージでない可能性が考えられます。一方で、販売場所が十分にあるのに新規顧客が増えない場合には、このプロセスに分解して原因を特定すべきです。仮説は3Cに加え、それ以外の視点からも考えることが大事です。 魅力の伝え方は? また、どのような商品が消費者の目に留まるのか、どのようなキャッチコピーが購買意欲を刺激するのか、一般の消費者と商品ターゲットの購買プロセスについて理解を深める必要があります。そのためには、まず自身が商品を購入する際に何を基準に判断しているのかを考えることを心掛けると良いでしょう。さらに、店頭観察やアンケート調査を実施することもおすすめです。

データ・アナリティクス入門

データ分析で成果を引き出す方法

CTRとCVRはどう分析? プロセスを段階的に考えることは、データ分析において非常に重要です。例えば、CTR(クリック率)やCVR(購入率)を比較することで、プロモーションの効果を測定します。この段階で、CTRが高い場合はターゲットユーザーに適した場所でプロモーションが行われているか、または掲載しているクリエイティブがユーザーに合致していることが考えられます。同様に、CVRが高い場合は購入を促すことができていたり、サイトのUI/UXが優れている、商品そのものが魅力的であるという理由が考えられます。これらの指標を基に課題を抽出し、改善策を講じることが必要です。 仮説はどう作る? 原因を仮説立てる際には、思考の範囲を広げることが求められます。具体的には、フレームワークを利用したり、反対概念を活用することが有効です。最適な解を見つけるためには、初めに適切な判断基準を考え、それに基づいて評価を進めます。判断基準に重要度の違いがある場合は、重み付けを行い、比較検討を通じて最適な解を選びます。 費用対効果はどう判断? プロモーションの費用配分を検討する際には、有料広告のCTRやCVR、各コストを再度検証し、費用対効果の観点から最終的には投資対効果への移行を考えます。また、メールマーケティングにおいては、ターゲットに適したバナーを見つけるために、ビジュアル、テキスト、クリエイティブの観点からABテストを実施します。 意思決定は合理的? 中長期的には、会社全体で「勘と経験に頼る意思決定」を「データ分析を用いた合理的な意思決定」へ移行することを目指します。このためには、誰でも気軽に分析ができる環境を整え、学びとモチベーションを高め、業務効率化により時間を確保することが重要です。 効果検証はどう実施? 投資対効果を考える上で、判断基準の検討、検証方法の確立、経営層への効果的なアプローチが求められます。メールマーケティングにおけるバナーのABテストの実施例として、秋の行楽シーズンを訴求する際に、ビジュアル面では人物の有無やテーマ、テキスト面では金額や特典、クリエイティブ面では静止画や動画を考慮に入れることが挙げられます。 人材育成はどう進む? また、データ分析における人材を育成するために、社内の教育プログラムを活用し、DX変革を推進するための環境作りも必要です。

データ・アナリティクス入門

A/Bテストでお客様の心を掴む方法

原因をどう特定する? 問題の原因を探る手法として、まずプロセスを分解してどこに問題があるのかを特定し、仮説を立てることが有効です。そして、解決策を検討する際には、複数の選択肢を洗い出し、その判断基準を考えた上で重要度に基づいて順位づけを行い、取り組むべき選択肢を絞り込む必要があります。 A/Bテストの意義は? A/Bテストを活用することで、複数の施策の効果を実際に試し、反応を見て評価することができます。この手法では、仮説を持ち、検証項目をしっかりと設定することが重要です。さらに、1つの要素ずつを検証し、テストのパターンは同時期、かつ同期間で行います。期間が異なると、テストしたい要素以外の環境要因が影響してしまう場合があるためです。 広告テストは効果的? 具体的な例として、YouTubeの広告動画作成時には、お客様のお悩みに関連づけて訴求ポイントを異なるパターンで作成し、A/Bテストを行います。どちらの広告が高いクリック率やコンバージョン率を示すかを確認することで、よりニーズの高い訴求内容を把握できます。同様に、LINE配信ではイベントのキャッチコピーを複数作成し、クリック率や開封率から最も効果的なコピーを見つけ出します。 工数を減らす方法は? なるべく工数をかけずに数パターンのクリエイティブを作成したいと考えています。A/Bテストはいつも話題に上がり、実施したいと思っているのですが、なかなか時間がなく一つのパターンしか作成できないことが多いのが現状です。手間を減らす方法を模索しながら、A/Bテストを実施することで、お客様のニーズを深く理解し、問題の原因を明確にしていきたいと考えています。

人気記事

「ファネル分析で見える改善の鍵」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right