データ・アナリティクス入門

ロジックで描く理想への一歩

現状と理想の差は? 問題解決には、これまで「正常なあるべき姿」とのギャップを埋める施策が主流とされてきたが、実は「現在の正常な状態」から「ありたい姿」へのギャップを埋めることも、立派な問題解決だという点に気が付きました。 アイデアは何で生まれる? アイデアを生み出す際には、ロジックツリーのようなフレームワークを用いることが重要だと感じました。ただし、そのためには意味のある切り口が不可欠で、切り口となるパターンの数は経験によるところが大きいと考えています。 ロジックはどう活かす? また、現在社内で生じている問題に対して、ロジックツリーを用いて「WHY」と「How」を整理したいと思いました。これまで、あるべき姿と現在の状況を数値で示すことが難しい(もしくは手間がかかる)ため、取り組みが進まず、結果として抽象的な対策案に終始していた印象です。今後は、数値化したデータを基にロジックツリーを活用することで、より具体的で幅広い施策を検討できるのではないかと感じています。

デザイン思考入門

現場の声がカタチにする未来

どんな改善アイデアを出す? 総務として社内の視点に偏りがちな中、実際の業務に携わる姿を観察し、自分自身が可能な範囲で実践しながら、現場の声を取り入れて改善のアイデアをまとめたいと考えています。 現場の状況はどう見る? オフィスエリアの使い方については、上層部の意見に依存すると個人の主観や偏見に左右されがちです。そのため、オフィスフロアの各エリアで実際に業務を行い、現場の状況を確認しながら検討を進めたいと思います。一方で、Wモニターや空気清浄機など、必要な物の取捨選択については様々な意見が出る中で判断が難しい部分もあるため、慎重に選定を進める必要があります。 デザイン思考はどう捉える? また、デザイン思考に関しては正解がなく、最終的な答えをイメージするのが難しいと感じました。現場の意見をまとめても個人の感想にとどまる部分があり、本当に市場に求められているかどうかは実際に作ってみないとわからないため、会社として新しいものを作り続ける体力が必要だと実感しています。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

クリティカルシンキング入門

ビジネス文章力が劇的にアップする学び

なぜ他者目線が重要か? 日本語は主語がなくても文脈で理解できることが多く、そのために本質や要点が伝わりにくいことがあります。この点を改善するため、他者目線で伝わる文章を心がけることが重要です。 フレームワークで整理する利点 私の役割上、完結な文章での発信や引継ぎが求められるため、特に文章の構成に注意を払うようにしています。例えば、大事な局面ではピラミッドストラクチャーのようなフレームを意識することで、整理された文章を伝えることができます。これにより、提案も通りやすくなり、相手への負担や無駄を減らすことができます。 提案の成功には何が必要? 営業相手への文章やプレゼンの構成では、常にフレームを意識し、相手にどう伝わりやすいかを考えることが大切です。本来承認してもらえる提案も、文章のわかりやすさや納得感の不足でやり直しになることがあります。したがって、初めからしっかり整理した文章で提案することが望ましいです。こうすることで、お互いが無駄なく効率的に働けるようになります。

アカウンティング入門

実務に活かす損益計算の分解術

損益計算書は理解できる? 言葉だけで損益計算書を理解しているつもりでも、実際に仕組みを分解して説明できるほどの理解には至っていないことに気づきました。具体的には、売上高や経常利益については概ね把握していたものの、その中間に位置する営業利益から当期純利益までの損益の流れが頭の中で明確にイメージできていませんでした。 自社財源はどう考える? また、自社の財源の賄い方について、少なくとも5つの段階に分解して考えなければ、全体の傾向を正しく捉えることはできないと実感しました。 医療機関の収益は? 実務においても、医療機関の財務分析を進めている中で、今回の学びを活かす機会がありました。早速、WEEK02で学習した内容をもとに、P/Lの各要素を分解し「この医療機関はどの部分で収益を生み出しているのか」という仮説を立ててみるつもりです。 分解手順を吟味する? さらに、その分解手順をフォーマット化して、様々なケースに当てはめながら傾向の違いを検証していく予定です。

データ・アナリティクス入門

小さな一歩から見える大きな未来

目的と対象は? データ分析を行う際は、まず対象を明確にし、何を比較するのか、どのような目的で分析を進めるのかをはっきりさせることが大切です。やみくもに作業を進めるのではなく、解決すべき問題を洗い出し、最終的にどのようなアウトプットを目指すのかを事前にイメージしておく必要があります。 計画の進め方は? 初めは大まかな分析から始め、そこから徐々に細部にわたる分析へと進めていくと、全体像を捉えながらも、必要な部分に着眼できるため効果的です。データの収集や加工の前に、分析のロードマップを描いて進めると、全体の流れが整理され、分析結果の精度向上につながります。 他部署での連携は? 他部署と共同でデータ分析を実施する場合は、問題点やアウトプットのイメージについて十分なコミュニケーションを取り、上流工程での認識合わせを中心に進めることが重要です。また、学んだ各種のフレームワークやグラフの表現方法を意識的に活用することで、知識の定着や成果の説得力を高める努力をしています。

データ・アナリティクス入門

具体を引き出す対話の魔法

目的をどう明確化? 分析の目的を明確にすることの重要性を実感しました。データを活用する相手がどのような目的で情報を求めているのか、コミュニケーションを通して具体的に確認する必要があります。しかし、実際に会話をすると、目的が漠然としていたり、具体的な内容が伝えられないケースが多く見受けられました。そのため、抽象的な要素を具体的な内容として引き出すヒアリング力が非常に重要だと感じています。この過程で、仮説設定や比較対象の選定がより明確になり、全体の分析基準がしっかりと定まると考えます。 営業データは何を示す? また、営業活動においては、提供するデータがますます重要になっています。特に、自社製品の導入理由を明確に説明することが求められる中、競合他社との比較において自社製品を選ぶ根拠を明確なデータで示すことが必要です。営業と意見を共有しながら、データ活用の目的を具体的に明確化し、客観的な視点を保った説得力のあるデータ提供を行うことで、導入率の向上につなげたいと考えています。

戦略思考入門

理論と実践がひとつに響く成長の軌跡

本質はどう捉える? 規模の経済性や習熟効果といった法則が紹介されましたが、実例に当てはめるとそのままでは適用しにくいと感じました。どの法則も必ずしも全ての場面に当てはまるわけではなく、業態や業界によっては逆効果となる場合もあるため、本質を深く理解し、表面的な活用に留まらないよう注意が必要だと思います。 習熟効果はどう働く? 自社の状況では、習熟効果や範囲の経済性が特に関連度の高い要素に感じられました。業務内容上、初期段階は時間がかかるものの、次第に習熟効果が現れ、経験曲線が右肩下がりになると考えられます。また、あるサービスで得た知見が他サービスへ範囲の経済性を通して転用される効果も感じられます。 どう両立させるのが良い? ただし、業務上の習熟効果が向上している一方で、人員も大幅に増加しているため、このバランスが難しい印象を受けます。内部の生産性向上と人員拡大という二つの課題の両立を、まずは自分の担当組織で考察・実行し、その成果を横展開していきたいと考えています。

クリティカルシンキング入門

営業プロセスの巧みな分解で成果倍増

どのようにプロセスを整理する? 営業成績を振り返る際に、プロセスをMECE(Mutually Exclusive, Collectively Exhaustive)に分解して整理するという視点が欠けていました。プロセスの分解自体は行っていたものの、その後の分析が不十分だったと感じています。今後は、この点を業務に活かしていきたいと思います。 問題解決に向けた分解思考 営業活動において、顧客を業界や職種で分解するだけでなく、自分の仕事のプロセスも細かく分解しました。その結果、どこに要因があり、何を解決すれば問題の特定につながるのかが明確になりました。このような分解という思考を、日々の活動に取り入れていきます。 課題特定のためのアプローチは? 具体的には、まず自分の営業プロセスを分解し、どこに課題があるか特定します。次に、顧客と受注の傾向も分解し、その中で自分の課題やポジティブな傾向を探っていきます。さらに、このアプローチを部下にも活用していこうと考えています。

データ・アナリティクス入門

仮説で切り拓く課題解決の道

実践的な手法は? フレームワークを活用して問題解決に取り組む重要性を再認識しました。かねてから仮説を立てる意識はありましたが、3Cや4Pといったツールを具体的に活用する方法を学んだことで、より実践的なアプローチが可能になったと感じています。 仮説の違いは? また、問題解決の仮説と結論の仮説の違いや、過去・現在・未来といった時間軸での仮説の切り口についても学びました。これらの考え方を今後のフレームワーク活用に組み合わせることで、より柔軟かつ具体的に問題に対応できると期待しています。 地域課題の対策は? 日常業務においては、無意識のうちに問題解決の仮説と結論の仮説を使い分けながら、地域ごとの課題や効果的な解決策を検討してきました。特に、地域が抱える課題に対して多角的な打ち手を検討する際には、課題解決の基本となる仮説思考が大いに役立っています。一方、他地域の成功事例を取り入れる場合などにおいては、結論の仮説を意識することで、より具体的な方向性が見えやすくなりました。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

30代に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right