デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

デザイン思考入門

本音に迫る新人研修の裏側

研修の成果はどこで感じる? 新人研修企画に向け、複数の社員に対してオープンエンドな質問を行い、今年1年の振り返りや研修会に対する印象など、豊富な定性的情報を引き出すことができました。中には「正直覚えていない」「配属されてからでないと分からない」といった回答もあり、知識のインプットは十分ながら実体験が伴わないため、研修がその場限りになっているという共通の課題が浮かび上がりました。 調査の難しさは何だろう? 一方、調査自体はまだ始まったばかりですが、対象者自身が気づかないような暗黙知にまで踏み込むのは非常に難しいと感じました。自身の仮説を提示し、それに対する意見は得られるものの、一歩踏み込んで本音の課題を引き出すためには、相手の領域やコミュニティに深く入り込む必要があると実感しました。 定性分析の説得力はどうする? また、定性分析はどうしても恣意的なまとめ方になりがちで、説得力に欠けるという懸念がありました。これに対して、定量分析で明らかになった結果は一般的すぎる面があるため、数値以外の情報を加えた上で、定性的な情報の根拠として定量データを補完的に用いることで、より説得力の高い分析が実現できるのではないかと考えるようになりました。

クリティカルシンキング入門

考え方のクセを見直して視野を広げよう

自分の考えは正確? 自分の思考が無意識のうちに偏っていることを痛感しました。このため、自分の考えを確認する「もう一人の自分」を育てることが重要だと感じています。「視点」、「視座」、「視野」という3つの視点を意識し、あらゆる思考を駆使しながら、その思考が的確かどうかを常に確認する癖をつけたいと思います。具体と抽象を行き来し、フレームワークを活用することも忘れずに行います。 運用方法はどう見直す? また、現行の運用に問題があるか再確認する際や現場からの改善提案、新規運用の導入、関係者を巻き込む場合、会議体で流れを変えたい場合など、さまざまな場面で学んだことを役立てたいと考えています。 習慣化の壁は何? さらに、1WEEKで学んだことを文字化し、常に目につく場所に掲示しておくことを心がけています。愛用しているMiroを活用し、対応しようとしている事象に対して3つの視点を意識した思考の結果をすべて書き出すことを習慣化しています。そして、無意識に制約をかけていないか、他に考えられることは何か、この考えは正確かを再確認することを続けています。唯一の懸念は、学びが身につかず終わってしまうことであり、まずは習慣化を目指しています。

戦略思考入門

学びを生かす!戦略的成長への道筋

学習で気づいた課題は? 今週の学習を通じて、顧客視点にフォーカスしすぎて議論が不足していた自分に気づきました。フレームワークを活用し、広い視野で整理・検討することで、整合性の取れた方針を定めることの重要性を学びました。また、限られた資源をどこに優先的に配分するかを考えることも重要です。 3年後の売上目標に向けて 私の部署では、3年後に大きな売上目標が掲げられています。その達成に向けて今提供している商品やサービスをどう進化させるか考えていますが、現在市場のトップで走るも、今のままでは大きな売上拡大は難しいと感じています。そこで、今回学んだフレームワークを活用し、現状を分析したうえで戦略を練り、部署内での議論がより深まるよう努めたいと考えています。 新規事業に求められる戦略は? 私は新規事業領域に取り組んでおり、いかに打席に立つ機会を増やすかに重点を置いています。求められているのは確度の高い戦略を多く創出することです。そのために、PESTで環境を整理し、3Cで顧客や市場の動向を分析、SWOTで自社の強みを明確にし、戦略を多数出します。そして、分析結果と整合性のある方法を優先順位をつけて選び出す方法で進めていきたいと考えています。

データ・アナリティクス入門

データ分析の新たな視点を発見!

データ分析に必要なスタート地点は? データ分析とは何かと問われたとき、私は即答できない自分に気づきました。しかし、week1で「分析とは比較である」という言葉に出会い、新たにスタート地点を明確にすることができました。これからは、自分が行おうとしている分析が「比較」になっているかどうか、自問自答できるようになりました。さらに、分析を行う目的をしっかりと確認し、自分が伝えたいことに合致した比較ができているかを常に問い続けることを忘れないようにしたいです。 結果的な「比較」に満足していませんか? よくある例として、言われたままにデータを出すことが多かったのですが、特に期末には前期比や前年比を提示するだけで終わっていました。しかし、何を「比較」すればより実態や現状を明確に伝えることができるのかを考えるアイデアが必要だと感じています。 新しい発見へとつながる比較は? たくさんのデータがある中で、売り上げの数字以外にも何か意味のある比較対象を見つけたいと思います。売り上げや数量、売り上げの多い顧客などは一般的な比較対象ですが、それ以外にどのような視点で比較すれば新しい発見につながるのか、色々な分析データを見ながら探していくつもりです。

クリティカルシンキング入門

会議力を高めるための新提案

伝わりやすさを重視してみると? 日本語では、言葉を発する際に主語や述語が抜けがちであることから、伝わりやすい言葉を組み立てることの重要性を意識しました。相手に明確に伝えるためには、「言語選択」「概念」「順序立て」そして「根拠づけ」が必要です。これには、ピラミッドストラクチャーを活用して、伝えたい要素を事前に整理することが効果的であると学びました。 会議やメールでの活用法は? 日々の業務、特に会議での発言やメールなどで、相手に結論を伝えたり、結論を求める際にこれらの技法を活用できると思いました。業務報告をする際には、最初に相手が知りたいポイントを考えてから話を始めることで、より効果的になります。伝達を簡潔にし、話が長くなりすぎないようにすることで、自分も相手も論点を見失わずに済むでしょう。 議論で結果を出すためには? 議論の場ではまず結論を提示し、その後に根拠を説明します。こうすることで、何を求めているのかを明確に示せます。自分が伝える立場に立ち、どのように聞いたり見たりすれば相手が納得するかを考えることが大切です。そのために、根拠を複数準備しておく必要があります。さらに、内容は思いつきで作らないことも心掛けるべきです。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

デザイン思考入門

小さな会話が未来を変える

暗黙知が示す問題は? 既存業務では、表面的には問題が見受けられなくても、暗黙知により不便さが隠れている可能性があります。そのため、ユーザーが大雑把に抱える課題を観察しつつ、定性分析を使って解決策を見出す必要があると感じています。まずは、現場をしっかり確認し、困りごとを持つ人がいないか探すことを心がけたいと思います。 仮説は有効か? また、自分自身が業務に追われ、常に周囲を見る余裕がなかったことも実感しています。そのため、あらかじめある程度の仮説を立てることが重要だと考えています。チームメンバーからは、偶然の会話の中で困っている点が見つかる場合があると聞いており、日常的にいろいろな人と話をするよう努めるつもりです。 分析手法はどう変わる? 今回の学びでは、暗黙知と定量分析の双方が大きなポイントとなりました。さらに、コーティングの手法を習得できたことで、これからはアンケートやインタビューで得た情報をコーティングする習慣を身につけたいと考えています。現在は生成AIの活用により、簡単にコーティングが可能となっているため、その点を意識しながらアンケート結果の分析にも取り組んでいきたいと思います。

データ・アナリティクス入門

ロジックで紐解く成長のヒント

問題をどう洗い出す? 今回の学習では、まず何が問題であるかを洗い出し、その問題箇所を明確にすることの重要性を学びました。問題の原因を詳しく分析し、対策を検討・実行するプロセスや、結果から各要因を考察する点、さらに理想と現状のギャップを埋めるための工夫が大切であると実感しました。 分析手法は何か? また、分析手法としてロジックツリーやMECE分析、さらに階層分析と変数分析の活用が有効であることを学びました。これらの手法を用いることで、データの整理がしやすくなり、効率的な分析が実現できると感じます。 実例で何を発見する? 具体例として、交通系ICカードの決済データを利用し、加盟店やキャンペーンごとの売上分析に応用できる可能性があると考えました。売上分析においては、年代、性別、居住地、曜日などの視点で検証し、来店回数や決済金額の傾向も踏まえて全体的な分析に役立てたいと思います。 量と質のバランスは? 最初の段階では、質よりも量を意識して経験値を積むことが重要と考えています。質も適度に保ちながら、実践を重ね、ロジックツリーやMECE分析を積極的に活用してデータ分析に取り組んでいきたいと思います。

データ・アナリティクス入門

仮説を飛び出せ!実践が拓く未来

学びの流れは? 実践演習を通して、What→Where→Why→Howの流れを学べた点が非常に印象的でした。実際の感想文を読むと、学んだ内容が具体的にどのように役立つかが実感でき、理解が深まったと感じました。 仮説と現実のギャップは? また、仮説の正しさに固執せず、世の中の結果を生み出す要因が複数絡んでいるという現実に納得しました。仮説を立てた段階で行動に移すことの重要性を強く感じ、その姿勢が実務でも大切だと理解できました。 複雑な要因は何故? さらに、複雑な要素が絡み合う中でWhyが必ずしも一つではないという点にも気付かされました。MECEに分類しながら仮説を立て、個々の要因を一つずつ検証していくプロセスは、仕事に応用するには手間がかかると感じました。しかし、説得力を持たせるためには、従来の仮説以外の理由を排除する作業が重要であることも学びました。 実務にどう生かす? この経験からは、仮説以外の可能性をいかに排除していくかという点が、MECE思考の力に直結していると感じました。本から得たフレームワークを活用し、実際の業務で実践することで、さらに思考力を高めていけると確信しています。

クリティカルシンキング入門

自分変革のヒントがここに

なぜアウトプットが大切? クリティカルシンキング講座を通じて、学んだ知識や将来のありたい姿について整理する機会を得ました。その結果、自分に不足している点や今後習得すべきスキルについて明確な指針が見えてきました。また、インプットだけの知識よりも、アウトプットを意識した知識の方がはるかに習熟度が高いことを、この六週間で実感しました。 変化の波にどう乗る? 私の業務はソフトウェア開発であり、変化の激しい現代において特にその業界は急速に変わっています。生成AIの登場に伴い、ソフトウェアエンジニアの働き方も大きく変化している現状にあって、常に消費者のニーズを満たす製品を生み出すためには、クリティカルシンキングが大きな基盤となると感じています。 意見はどう伝える? また、MTGでのディスカッションでは、認識のずれや歪みが生じうることを意識し、経験豊富な上司やメンバーの意見をただ受け入れるのではなく、自分の意見も積極的に伝えることを心がけています。さらに、ソフトウェアの機能開発においては、ユーザーが本当に求めているものは何かを常に考えながら、ユーザーの期待に応える製品作りに取り組んでいます。

「結果 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right