クリティカルシンキング入門

データ分析の新たな視点を拓く学び

数字の見せ方はどう? グラフや比率などの数字の表示方法を変えることで、印象が異なり、最初の情報だけでは気づかない傾向や特徴を発見できることを学びました。グラフ化する際も、分類の仕方によって見えてくるものが変わります。まずはRaw Dataを確認して全体を把握し、その上で何を伝えたいのか整理して数字を整理する必要があると実感しました。 切り口は何で違う? また、数字の切り口によっては本質を見誤ることがあります。そのため、常に複数の切り口を持ち、一つの見方だけではなく、様々な切り口で数字を分析することが重要です。これまで経験に頼っていた切り口も、When、Who、Howを意識することで幅広く持てるようになると気づきました。 データの視点はどう? 私の仕事では日常的にデータに触れ、それを解釈しています。同じ現象の分析にも異なる視点を持つことを心がけています。具体的には、宿泊予約数の動向をデイリーのデータで見ていましたが、週次や月次で見るとどのような違いがあるのかを早速試してみたいと思います。また、他の切り口での分析も手間はかかりますが、視野を広げるために取り組んでいきたいです。 行動する意義は? 自分の思考の癖から抜け出すには、まず行動することが大切です。ひと手間、ふた手間加えて、複数の視点で分析することを心がけます。その際、これまでの分析結果や結論を再評価し、本当に正しいのか疑う姿勢を持ち続けたいです。また、MECE(漏れがなく、ダブリがない)の意識を持ち、ロジックツリーを活用していくことで、このフレームワークに対する苦手意識を克服していきたいと思います。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

アカウンティング入門

カフェ経営で学ぶ価値と利益の秘密

カフェで価値守れてる? アカウンティング研修の第1週目では、P/L(損益計算書)を題材に、カフェ経営のケーススタディを通して「利益を生み出すためには、店としてどのような価値を提供するか」が重要であると学びました。特に、高級志向のカフェが原価低減を図るために安価な豆を使用しようとしたが、結果的に店のコンセプトが損なわれ、顧客に支持されなくなる可能性があるという事例が印象に残りました。単に売上から原価を引いた数値だけで判断するのではなく、「価値を守ることが利益に直結する」という視点の重要性を実感しました。 IT提案で本当に伝わる? この学びは、私が関わるITシステムの提案やプロジェクト企画にも活かせると感じています。たとえば、顧客に単にコスト削減を訴えるのではなく、その企業のビジョンや利用者のニーズに合致した価値を明示し、費用対効果の高い提案を行うことが大切です。そのため、今後は提案書の作成時に「この機能は誰のためで、どのような価値を提供するのか」を意識し、価格や納期だけでなく、価値提供を軸にした提案を心がけていきます。 価値、どう数量化する? 一方で、「価値を守ることが利益につながる」とはいえ、その“価値”をいかに定量的に測定するかについて疑問も感じました。ITプロジェクトでは、顧客の要求に応えるために機能の取捨選択が求められ、何を守るべき価値とするかの判断が難しいと感じています。他の受講生にも「価値」と「利益」のバランスについて、実際の経験をもとに意見を交換し、定量評価が難しい価値をどのようにマネジメントに反映するかを議論してみたいと考えています。

マーケティング入門

学びが未来を輝かす体験の秘密

体験価値って何故? モノを売るのではなく、体験を売るという考え方は以前から理解していましたが、ディズニーランドの具体例が示されたことで、より一層納得することができました。個々の要素がただ優れているのではなく、全体でストーリーを描いている点が強みであり、機能的な価値以上に情緒的な価値が高く評価されていることがよくわかります。 商品選択はなぜ? また、たとえば一部の家電においては、ダイソンを選ばない理由や、パナソニックの商品を実際に使った経験が影響しているという事実も、興味深い示唆を与えてくれました。同じ種類の家電を購入する際、まずはパナソニックが選ばれる傾向があるのは、企業側が直接経験を作り出すことは難しいものの、顧客に良い体験を提供できれば長期的な関係性にもつながるという証左です。 未来はどう感じる? さらに、パーパスやミッションの実現方法についても考察を深めました。商品を通じて顧客が体験する「先にあるもの」を具体化することがゴールであり、ただ単に業務改善を目指すだけでは大手企業に太刀打ちできないという厳しい現実も見えてきます。いかにその先の明るい未来を体験させ、想起させるかが大きな課題であり、そのためにも改めてパーパスの再構築が求められています。 戦略は見直す? 来期のスタートが目前に迫る中で、今期は曖昧な状態のまま積み上げてきた戦略に限界を感じています。自社の商品の魅力を誰に、どのように伝えるか、そしてその結果としてどのような未来を望むのかを明確にするため、これまで学んだことを活かし、前段階の整理を早急に進める必要があると感じています。

データ・アナリティクス入門

データ分析で見つけた新たな視点と仮説の立て方

データ分析の進歩を実感 これまでの実践演習のおかげか、ライブ授業の例題の際、自分が受講以前よりデータの着目ポイントがわかるようになったこと、仮説を複数出すことが怖くなくなっていたことに気付きました。また、ライブ授業の中で出てきた「やみくもに分析しない」という点も、性格上ハマりやすい沼だと思うので、優先順位を考えつつリソース配分を意識しながら分析したいと思います。 ディスカッションでの学び方とは? ディスカッション形式で例題を解くことで、人によってデータの見方や感じ方が違って面白かったです。一人でこっそり分析するよりも、複数人で話し合いながら進める重要性を感じ、実務でも活かそうと思いました。 新規事業におけるフレームワーク活用 新規事業を担当しており、これから多くの施策や企画を立ち上げる機会が増えると思うので、その際には効果的な施策を打ち出すために、問題解決のフレームワークを使って体系的に進めていきたいです。今回の講座で学んだ大きな収穫の一つは「振り返ることの重要性」です。グループワークを通して意見を交換し、その際に振り返りとして自分の考えをまとめる時間があったことが学びに繋がりました。施策を打った後も、その振り返りを必ず行い、次に活かせるようにしたいと考えています。 データをどのように活用すべき? 今後も引き続きデータ分析の講座や研修を積極的に受けたいです。実務レベルでは、常に仮説を持ち、複数の切り口からデータを分析・比較し、結果の検証を行うという順番を意識しています。一部のデータだけを見てすぐに判断しないように気を付けたいと思います。

クリティカルシンキング入門

自分の考え方を変える大切さに気付く

クリティカルシンキングの重要性を再確認 クリティカルシンキングはビジネスにおける重要な土台です。人間は「考えやすいこと」や「考えたいこと」を考えてしまう傾向があり、その結果、無意識のうちに考えが制約されてしまいます。重要なのは、主観的な思いつきや直観、経験に頼るのではなく、客観的に説明責任を持って考え話すことです。これを実現するためには、まず頭の使い方を知り、他者とディスカッションし、反復トレーニングすることが必要です。 思考停止をどう克服する? 現在の自分の思考は主観的であり、自身に経験のない事を考えるときに思考停止に陥ることを改めて実感しました。これまでの経歴上、答えがある事に対して取り組むことが多かったため、答えのない事について深く考えることは少なかったです。しかし、これからは悩むことを楽しもうと思います。 会話での問題抽出の重要性 また、会話のキャッチボールにおいて、会話や会議の中で論点や趣旨からずれた発言をしてしまうことがあると感じました。問題の原因を深く探り、表面的な問題だけでなく水面下にある問題を会話や洞察の中からあぶり出すことが重要です。相手にわかりやすく伝えるためには、自分自身が深く内容を考え、整理している必要があります。 無意識の行動を記録する利点とは? 常に自分を俯瞰して無意識のうちに行動することを意識すること、5W1Hを意識すること、直観的な対応を取ろうとしている時にどんな状況でそうなったかを記録することを心掛けています。抽象的な言葉を出さず、具体的に伝えることを意識するようこれからも努めます。

クリティカルシンキング入門

グラフ選びで差がつく伝達力

伝えたい内容は? メッセージを意識したグラフ選びの重要性を強く感じています。グラフ作成が目的ではなく、伝えたいメッセージを正確に届けることが本質です。誤ったグラフ選びは、情報の読み取りを難しくし、本来伝えたい内容が伝わらなくなる恐れがあります。また、メッセージは色使いやアイコン、文字フォントなどの要素によって受け手に与える印象が変わるため、これらの工夫も大切です。 データの本質は? データを扱う業務においては、示唆や事実の取り扱いが鍵となりますが、何よりも大切なのは、適切なメッセージを抽出することです。事業で本当に伝えるべき内容をデータから見出し、わかりやすいグラフや表現で正確に伝えることを心がけています。データはあくまでメッセージ伝達のための手段であるため、無理に装飾したり加工したりするのではなく、本質となるメッセージをしっかり押さえることが必要です。 受け手は誰? また、伝えたいメッセージは、受け取り手ごとに考えるべきです。事業や状況を踏まえ、緊急度や重要度を加味して絞り込むことで、ビジネスに必要な情報が確実に伝わるようにすることが求められます。何が言いたいのかわからないという状況を避けるため、伝えたいメッセージとの整合性を意識した表現力を磨いていきたいと考えています。 構造化で進化? さらに、現在のChatGPTは文章の構造化や整理に大いに役立っています。ワークのプロセスを通してPDCAサイクルを回す中で活用し、その結果を同僚とのディスカッションを通じてさらに改善し、アウトプットの精度を高めていきたいと思います。

デザイン思考入門

挑む受講生が描く学びの軌跡

どの手法が有効? 私の業務では、主に三つの手法を活用しています。まずA/Bテストでは、メール告知に取り入れる際に、カラーや情報の提示順序などの要素を変更しながら検証を行います。数値化可能なクリック率やコンバージョンの結果をもとに、効果を測定しています。 参加型はどう活かす? 次に、参加型デザインです。アンケートの回答からユーザー視点での改善点を抽出し、定期的に開催するセッションでは、複数のロイヤルユーザーの意見を自由に出してもらいながら改善策を模索しています。 インタビューで何を引き出す? さらに、インタビューも実施しています。購入の動機や使い方を詳しく聞き取り、限られた時間の中でユーザーの意見を引き出すためには、ファシリテーション技術が重要であると感じています。なお、インタビューでは、自分の仮説検証において予想と異なる結果になることも多々あり、大きな声を持つ一部の意見に左右されず、冷静な判断が求められると実感しています。また、求めるデータの種類に合わせて、最適な情報収集手法を選択することも大切です。 デザイン思考はどう磨く? デザイン思考については、明確なゴールが設定されているわけではなく、その時々で最高のものを作るために100%の力を注いでいる状況です。しかし、知れば知るほど「より良いものを」という気持ちが高まり、常にアップデートを重ねていくOSのようなものだと感じています。かつて先輩から「我々が作るものは常にβ版である」との言葉をいただいたことが、決して満足せず成長し続ける意欲に繋がっていると改めて考えるきっかけとなりました。

クリティカルシンキング入門

データ分析で見つける新たな可能性

情報はどう整理する? データを分析する際には、まず与えられた情報をそのまま受け取るのではなく、必要に応じて自分で欄を増やし、追加の情報を作成することが重要です。そして、その情報を視覚化し、絶対値だけでなく相対値も考慮しながらデータを評価することを心がけるべきです。 区切り方はどう決める? 次に、データを視覚化する際には、データの区切り方によって見える情報が異なることを認識し、自分の仮説が事実かどうかを確認するためにどの単位でデータを区切るかを慎重に考える必要があります。一番重要なのは、データをさまざまな切り口から分解し、単純に受け入れるのではなく、再度丁寧に考え直す姿勢です。 分解精度はどう向上? 業務においては、改善提案資料の根拠を示す際、日常的に発生する内容に対して、前回よりも今回、今回よりも次回と、分解の精度が向上していることを自分で確認しながら取り組むことが求められます。また、新しい運用の実施可否を判断してもらう際や、イベントのアンケート結果を分析する際、応対品質評価結果を分析する際にも、しっかりとしたデータの準備と分析が必要です。 事実確認は万全か? 確かな事実を分析するには、必要なデータが揃っているか、十分に分解されているかを事前に確認し、その上でデータ分析を開始するようにします。これにより、ただ手元にあるデータをそのまま見るのではなく、一時停止してデータを視覚化し、仮説が事実であるかを確認することを意識します。そして、MECEなどのフレームワークを活用し、抜け漏れがないかを確認した上で結論を導き出すことを心がけます。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

リーダーシップ・キャリアビジョン入門

やる気の秘密がここにある!

モチベーションの謎は? ヒトのモチベーションは主観的なものであるという考え方を学びました。そのため、モチベーションを上げる方法について尋ねられることが多いですが、結論として「ヒトのことはよくわからない」という視点を持つことが大切だと感じました。 フレームワークで理解? その上で、フレームワークを知り、それを活かすための知識を身に付ける必要があることも実感しました。ハーズバーグの衛生要因と動機づけ要因の2つを理解することで、不満や満足の状態がどのように変化するのかを考察しました。環境や金銭面は不満要因に分類され、改善しても必ずしも満足に結びつくわけではない一方、やりがいや承認は満足度に大きく影響し、不満要因にはなりにくいと理解しました。 メンバーの価値観とは? また、メンバー各々が何を大切にしているのか、その価値観をくみ取り、動機付け要因に働きかけることが重要だと学びました。特に、経験の浅いメンバーや自立性の低いメンバーに対しては、彼ら自身の自走力を引き出すための支援が必要です。その結果、私自身が新しいことにチャレンジできる時間を確保することにもつながると感じました。 困難にどう向き合う? 仕事においては、相手の状況や性格をよく観察し、どんな困難に直面してもあきらめず、成果を最大限に発揮するために徹底的に向き合うことを心がけています。現在はゴールデンウィークのため一週間休みですが、来週から改めてこの姿勢で取り組んでいく所存です。常に「イラッとせずに、根気よく。成果のために、諦めない」という意識を持ち続けたいと思います。

リーダーシップ・キャリアビジョン入門

たった一度の振り返りが未来を変える

なぜ振り返りが大切? 振り返りとフィードバックは、失敗や経験から学び、次につながる具体的な改善策を見出すための重要なプロセスです。経験をただ振り返るだけでなく、具体的な事実をもとに、次の行動に結びつくフィードバックを行うことが求められます。 実践方法はどうする? 効果的なフィードバックを実施するためには、以下の点に十分注意する必要があります。まず、自己評価と学びの言語化を通じて現状を正確に把握し、具体的な事実に基づいた伝え方を心がけます。また、評価基準を明確にした上で、良い点と改善点の双方をバランスよく指摘し、改善策を具体的な行動計画へと落とし込むことが大切です。 モチベーション理論は? さらに、マズローの欲求5段階説、マクレガーのエックス理論とワイ理論、ハーズバーグの動機付け衛生理論という3つのモチベーション理論に触れることで、個々のモチベーションの個別性を理解し、それがメンバーの高いパフォーマンスに直結することを実感しました。 次の行動は何? 現在、前期のアクションプランに対する振り返りを行っている時期であり、このプロセスを通じて効果的なフィードバックの5つのポイントを意識的に実践していきたいと考えています。振り返りとフィードバックの結果をもとに、新たなアクションプランを作成し、各メンバーの主体的な取り組みを引き出すことを目指しています。そのため、目標設定面談ではあらかじめフィードバックの内容を整理し、各メンバーの自己評価と学びに十分耳を傾け、特にその過程で感じた思いや感情に共感することを大切にしています。

「結果 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right