戦略思考入門

新たな視点で探る優先順位の極意

どれを先にすべき? 普段の業務では、仕事に取りかかる際、優先順位をあまり意識せずに進めていると感じていました。しかし、今回学んだ「何を優先し、何を後回しにするかを判断する」という考え方は、実際に製品を売り出すときなど、日常業務でもよく遭遇する状況だと気づかされました。たとえば、売上高、利益率、顧客のリピート率、製造にかかる時間といった要素を基に、どれを優先すべきかを判断することが求められます。 どの基準で決定? 業務においては、売場に商品を揃える際、どの基準を用いてタスクの優先順位を決定するかについて検討し、最適な方法を見出していきたいと感じています。また、その決定基準をチーム全体で共有することによって、仕事の効率を向上させることができると考えています。 チームでどう話し合う? さらに、チームメンバーとも優先順位の基準について話し合い、共通の考え方を持つことで、より効果的に業務を進められる環境を作りたいと思います。実際に方法を試し、結果を検証しながら最適な手法を確立していきたいと考えています。

データ・アナリティクス入門

原因探求から始まる成功への道

どうして原因分析をする? 問題解決のステップであるWhat、Where、Why、Howの流れが非常に印象に残りました。特に、どうしてもHowの部分に注目しがちですが、その前の段階で問題を明確にし、原因をしっかりと特定して分析する過程こそが、本質的な解決につながると感じました。 なぜ退会が増える? また、コミュニティ運営において退会者の増加という現象を分析する際にも、このステップが有効であると考えました。「なぜ退会が起こるのか」という問いに対し、まずは原因の仮説を立て、問題を具体的に洗い出すことが大切だと思います。 なぜ数値化で解決? そのため、現状、退会時に取得しているアンケート結果を活用することが有用だと感じます。アンケートの内容を分析し、所属期間中に行われたイベントなどの傾向と照らし合わせることで、理想的な状態とのギャップが明確になるのではないでしょうか。ギャップを数値として示すための具体的な指標についてはまだ模索中ですが、数値化が進めば対策の策定もより容易になると感じました。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

クリティカルシンキング入門

客観思考で挑む原因究明

客観視できていますか? 主観的な判断を排除することの重要性を学びました。私たちの思考には必ずしも客観的な視点が備わっているとは限らないため、答えが導かれた後も「なぜその結論に至ったのか」「本当に正しいのか」を問い続けることが大切だと感じました。 他の原因も見えてますか? また、仕事で問題が起きたときに原因を明確にする際、この考え方が役立つと実感しています。すぐに原因と思われる事象に気が付いたとしても、他にどんな原因が存在するのか、なぜその事象が発生したのか、定量的なデータを用いて誰が見ても納得できる説明ができるかを念入りに考える必要があります。 多角的に考えていますか? さらに、問題発生時には、客観的な判断に必要な情報をリストアップし、思考が一面的にならないように努めています。ロジックツリーを活用して原因を深堀りし、上位者や他部署の視点からもチェックを行うよう心掛けています。最後に、取り組んだ結果を振り返ることで、次の課題解決に向けた改善策を見出す重要性を再認識しました。

戦略思考入門

無駄を省く戦略のはじめかた

戦略思考の基本は? 戦略思考とは、適切なゴール設定を行い、そのゴールに向かう最短最速の道筋を設計することだと捉えました。むやみがむしゃらに取り組むのではなく、無駄を省きながら内部と外部の両面から深く広い視点で物事を捉える必要があると感じています。 分析視点は変わる? また、自社の今後の戦略立案において、今回学んだフレームワークを積極的に活用していきたいと考えています。今までの3C分析では市場、他社、自社に焦点を当てていましたが、今回のコースで市場だけでなく顧客や、直接的なサービス競合以外の他社にも目を向けるべきだという学びを得ました。この気づきをもとに、分析を再度見直し、整理していく予定です。 PDCA活用の方法は? 具体的には、分析結果をまとめた資料を上司に提出し、フィードバックを得た上で修正を加え、再度提出するというPDCAサイクルを徹底して回していきたいと考えています。今回の学びは非常に多く、インプットだけでなく、アウトプットを重ねることで着実に理解を深めていきたいと思います。

クリティカルシンキング入門

業務効率アップ!資料作成の極意

情報整理の重要性とは? 相手に伝えたい内容を考え、相手に伝わるための情報と表現の整理に時間をかけることが重要だと感じました。さまざまな業務がある中で、資料作成に多くの時間を費やす点は気になるところですが、順序立てて情報を整理することで、多少時間がかかるのは仕方ないことだと再認識しました。また、それぞれのフォントや色の意味を理解し、活用することも考えています。 報告資料作成の工夫は? 人事関連の政策で部のメンバー、社員や役員に社内の人員状況に関して報告する際の資料作成に役立つと感じました。その際、自身が伝えたいことだけでなく、相手が気になっている内容も予測して作成することで、その後の議論が成果につながるでしょう。 データ可視化のポイントは? グラフ作成や資料作成の際には、資料を通して伝えたい内容を考え、それに合わせたグラフを用意できればと思います。データをまず理解するためにグラフを作成し、その後にどのような結果を出すかを考え、必要なグラフや資料を追加で検討することが大切だと感じました。

クリティカルシンキング入門

データの魔法で問題解決力が飛躍

イシュー設定の重要性は? イシューの設定によりデータの見方が変わることを実践を通じて理解しました。問いの形式で設定すると共有が容易になるため、答えを出すことが問題解決に直結し、仕事の本質とも一致しています。問題解決の真因に迫る問いを設定し、その後、スキルを駆使してロジカルに分析を進める必要があります。 専門人材育成の秘訣とは? 事業計画の作成時には、社会の課題解決、つまりイシューの設定を行います。また、専門人材の育成においては、相手の要望や期待に偏らないようにし、ビジョンに沿った結果を出すための企画を練ることが重要です。 MECEのチェックは欠かせない? ソリューション開発・提案においては、根本的な解決事項の抽出にこの考え方を応用します。そして、自身が設定した目的・問いについては必ず二度確認し、MECEになっているかをチェックします(これはよく抜けがちです)。視座を高めるためには、経営者の視点で物事を捉え、少なくとも指導を受けるチーフと同じ視点で考えることを意識します。

クリティカルシンキング入門

ナノ単科受講で再認識した「問い続ける力」

反省から学ぶ環境作りの重要性 ライブ授業を通じて、考えには偏りが生じるため、常に問いを残し、自分自身で振り返ることができる環境作りの重要性を再認識しました。経験に基づいて物事をただ進めるのではなく、立ち止まって振り返ることを今後も大切にしていきたいと思います。 技術的議論での整理と伝達のコツ 複雑な技術的議論の中で、質疑応答の際には、「何が求められているのか」「その結果を導き出すためには何が必要か」を整理し、正しく伝えることが重要です。相手が議論から脱線しないように導くために、このプロセスを実践することは非常に有益です。そのためには、経験値の整理が必要となります。 問いを持ち続ける習慣の大切さ これまで積み上げてきた技術的知見に対しても、一度立ち止まって「問い」を立て、そのアウトプットを行う習慣を身に付けることが重要です。この習慣化のためには、ビジネスシーンだけでなく、日常生活においても立ち止まり、「イシューは何か」を意識し、常に「問う」姿勢を持ち続けることが大切です。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

マーケティング入門

STPで商品価値が変わる!?学びの実感

STP再評価だけで成長? 企業の事例を通して学んだことで、商品自体を変更しなくてもSTPを再評価するだけで、ビジネスを成長させることができると理解が深まりました。また、ポジショニングを検討する際には、自社視点ではなく顧客視点でポイントを絞って売り出すことの重要性を学びました。 コンセプト調査の重要性とは? コンセプト調査を行った際の結果分析時に、特にSTPの重要性を感じました。STPをしっかりと定めることで、その後のプロモーションや施策に一貫性を持たせることができると確信しました。また、新商品の企画を考える際には、ポジショニングマップを作成し、差別化ができているかの確認を行いたいと思います。 自社の強みをどう活かす? さらに、自社の既存商品をSTPにあてはめて分析することで、自社の強みや他社との差別性を理解できました。こうして理解した自社の強みを書き出し、顧客視点でも強みかどうかを再確認し、複数の強みをかけ合わせながら新商品の企画を構築していきたいと考えています。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

「結果 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right