データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

データ・アナリティクス入門

グラフでひも解く学びの軌跡

グラフ活用法ってどうする? 今週は、グラフの活用方法について学びました。データのばらつきを視覚的に把握するために、ヒストグラムが有用であると理解しました。たとえば、生徒の年齢のばらつきを見る際には、割合ではなく実数の分布に注目すべきだという点が印象的でした。 どの数値がポイント? また、分析でよく使われる代表的な数値についても復習しました。単純平均・加重平均・幾何平均・中央値など、それぞれの計算方法と用途を確認し、特に平均値は外れ値の影響を受けやすいことに注意が必要だと実感しました。 現場の指摘はどう読む? 現場でDX担当としてデータ分析に取り組む中、先日、部署ごとの退職率を比較して報告した際、経営層から数値の重み付けを考慮するよう指摘を受けました。当初はその意図が分からず戸惑いましたが、加重平均の考え方に近いのではないかと理解し始めています。ランキングだけで示すのではなく、ヒストグラムなどのグラフを用いて視覚的に説明できるよう工夫したいと思います。 数学の基礎は何が大切? 一方で、数学の基礎の重要性を再認識しました。平方根や標準偏差、正規分布と2SDなどの数式が全く理解できず、焦りを感じています。まずは基本を押さえ、Excelの関数でどのように表現できるのか試してみるとともに、ピボットテーブルの復習にも取り組む予定です。 具体例の探し方は? 今回の分析では、どの指標を使うべきか具体例がすぐに思い浮かばなかったため、今後はより多くの具体例を調べるとともに、実際に手を動かして理解を深めるつもりです。遠回りになるかもしれませんが、様々な切り口で数値を検討していきたいと思います。 専門用語、理解できる? また、専門用語の理解もまだ十分ではないと感じており、関連するデータの傾向把握についても、ひとつひとつ学んでいく必要があると実感しました。これからも引き続き、知識を着実に身につけていきたいです。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

アカウンティング入門

経営健全性を筋肉質で学ぶ企業分析の魅力

視覚的に経営を理解する方法とは? 内容的にはすでに学んだことが多かったが、他の学習者も書いているように「体の大きさ」を使った例がとても分かりやすかった。「骨格や筋肉」を純資産、「脂肪」を負債とし、純資産の割合が高いことを「筋肉質」と表現するのは、会社の経営の健全性を視覚的に理解する助けとなった。前回学んだ売上高と各利益の違いからも会社の戦略やビジネスモデルを把握できたが、企業の全体像や経営の健全性を具体的にイメージできるようになったのは大きな進展だった。 貸借対照表のストーリー理解法 自社の貸借対照表もまた、ストーリー仕立てで理解することが有効だと気付いた。具体的には、各拠点の経営状況を取締役会での報告に基づいて把握し、今後の建て替え業務などで貸借対照表がどのように変化するかを観察することが有益だと思う。 同業他社との比較で学ぶ 同業他社の貸借対照表を通じて企業規模や戦略を理解することの重要性も感じた。特に、同じ業界内での比較を通じて規模感や経営戦略の違いを学ぶのに役立つだろう。 異業種のビジネスモデル理解の重要性 さらに、他の業界の貸借対照表を見る際には、そのビジネスモデルや資産状況を理解することが重要だと感じた。実際、鉄道会社のように固定資産が多い業界のビジネスモデルをイメージしながら、数字を読み取る練習を続けたい。また、経理の数字に馴染みがない中で、一般的な負債額や規模感を身につけることが事業管理や開発に携わる上で役立つと感じる。 経営者視点での貸借対照表の見方 取締役会の議事録や音声を元に会社の経営状態を理解し、貸借対照表を経営者の視点で見るスキルも重要だと思う。他社の情報を見る際には、まずその会社のビジネスモデルをイメージし、そのイメージを持って貸借対照表を確認。その後、HP上の招集通知などに記載された経営状況の説明を読み込み、具体的なストーリーと数字を結びつけて理解するプロセスが有効であると感じた。

クリティカルシンキング入門

読み手心をつかむ情報発信術

グラフは何を伝える? 誰に何を伝えたいのかという視点で、伝えたい内容や対象に合わせたグラフや文章の使い分けについて学びがありました。まず、グラフの見せ方として、時間軸のデータを示す場合は棒グラフを用いること、時系列で経緯や変化を伝えたい場合は折れ線グラフを使用すること、そして要素ごとのデータ表示には横の棒グラフが適していることが分かりました。 文字で伝える魅力はどう? 次に、文字表現における具体的な工夫では、伝えたいメッセージに合わせたフォント選びが大切であると感じました。また、強調すべき部分には斜体やアンダーライン、さらには文字の色を変えるなどの手法が有効です。使用する色についても、メッセージとの整合性や色が持つ意味を考慮しながら選ぶと良いでしょう。さらに、必要に応じて文字とアイコンを組み合わせることで、視覚的な理解を促進できる点も印象的でした。 スライドはどう工夫する? また、スライド作成時には、読み手がメッセージに沿って情報を探しやすいように、テキストや図表の配置、そして表示順序に細心の注意を払うことが求められます。スライドの目的が社内ミーティングなのか、対上司や他部署とのプレゼンテーションなのか、または対外商談なのかによっても、メッセージの伝え方や使用する資料の工夫が必要です。 レイアウトはどう見直す? 社内や対外のミーティング、メール配信などいずれの場合も、常に「読み手」を意識した情報構成が大切です。特にスライド作成においては、伝えたい要素を盛り込み過ぎず、一番伝えたい内容を際立たせるための適切なグラフ選びとテキスト、図表の配置が鍵となります。パッと見て意図が伝わるスライドにするために、情報収集や準備に十分な時間をかけることも重要だと実感しました。 文章作成の秘訣は何? 最後に、読んでもらえる、また読みたいと思わせる文章作成のために、日常的にどのような工夫をされているのか、ぜひお伺いしたいです。

リーダーシップ・キャリアビジョン入門

内面が導く真のリーダーシップ

本当のリーダー像は? リーダーシップとは単なる行動ではなく、その人の状態や内面の意識、能力が表れるものだと改めて感じました。単に行動するだけでなく、広く物事を考えた上で、具体的な行動で示すことが大切であると理解できました。 背後の本質は? また、リーダーシップは場面に応じた適切な行動とともに、その背景にある意識や能力が存在するという点に気付かされました。自分自身の考えや経験を言語化し、教訓としてまとめ、自らのものにしていくプロセスが、リーダーシップの醍醐味であると感じます。行動は誰にでも見やすい部分ですが、その背後にある意識や能力こそが真のリーダーシップを形成すると実感しました。 環境変化にどう対応? また、組織の役割変更に伴い、各々の立場でリーダーシップを発揮することの重要性を強く感じました。メンバーの中には、新たな環境に対してモチベーションが高まる人もいれば、理解が十分でなかったりプレッシャーを感じる人もいます。組織のリーダーとして、目指すべき姿を全員に浸透させること、新たに責任を担う人には積極的に行動することを意識してもらうこと、また、過去にリーダー経験のあった人に対してはフォロワーシップを発揮し再びリーダーとしての資質が認められるよう後押しすることが求められます。 共有のステップは? このような多様なメンバーの状況を踏まえ、取り組みの意図や意思を十分に共有するため、以下のステップが有効だと考えます。まず、マネジメント層でビジョンの再整理を行い、該当メンバーに求める役割と期待を明確にします。次に、それぞれの役割や責任を明確にした上で、個々の想いを十分に聞き取ります。その後、現状とのギャップを整理し、全員が共通理解を持てるよう整合を図ることが重要です。最後に、定期的なコミュニケーションの場を設け、各メンバーの状況や進捗を確認しながら、継続的なフォローアップを実施していく必要があると感じます。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

クリティカルシンキング入門

情報分解のスキルで未来が変わる!

情報の分解のポイントとは? 今回の学習では、情報の分解の仕方を学びました。大きくポイントが4つありました。 1. 受け取った情報を加工し、知りたい情報が読み取れるように加工をする 2. 情報を分解するときに、機械的に加工するのではなく、知りたい情報が読み取れるように分解する 3. 分解の切り口を1つだけにするのではなく、複数の切り口で分解をする 4. 分割するときにMECE(Mutually Exclusive, Collectively Exhaustive)に分解する 特に学びを得た切り口は? 今回の学習では、特に3の項目が大きな学びになりました。情報の違いを探すときに、特定の切り口で分けて数値として違いが出ていても、もう一歩別の切り口で分解すると違う答えが見えることに気づきました。普段意識できていなかったこの点を「本当にそうか?」と疑うことは大事だと感じました。 また、「情報の全体を定義してから分割する」ということも、網羅的に情報を分割する上では重要だと思います。 具体的な活用シーンは? 1. 受領したデータを加工し、社内の打ち合わせやお客様への発表などで視覚的にわかりやすい情報に整理して表示する場面 2. 展示会の来場者アンケートを作成する場面 3. 社内の作業や資料のレビューの際に、抜け漏れがないかを確認する場面 結論をどう検証する? これらをいくつかの場面に適用してみようと思います。 1. グラフ化などをするときに、情報の分割前に切り口を考え、その後もう一度考えた切り口を振り返り、出した結論と比較したいと思います。 2. 昨年のアンケート作成時には、情報収集が難しく、網羅性のないアンケートになってしまっていました。今後はMECEを意識して項目を作成したいと思います。 3. レビューを頼まれた際、気になる部分しかコメントできていなかったので、情報の抜け漏れがないかを意識して確認していきたいです。

クリティカルシンキング入門

思考のバランスを育てて、新たな視点を得る

偏った考えは何故起こる? 考えには偏りや制約があることを学びました。人は無意識のうちに自分の好きな考え方に偏りがちで、情報を集めたり思考を巡らせたりしています。このため、重要な情報を見落としてしまい、結果として結論が変わることもあります。また、演習を通じて、制約がないと逆にアイディアが広がりにくい特性があることに驚かされました。 どうして自問自答する? 「もう1人の自分を育てる」ことの重要性を感じました。結論を導き出す際には自問自答を繰り返すことが大切です。業務においては、様々な情報を幅広く浅く得ることが求められますが、それらの中から何が重要なのか、どこまで深掘りすべきかを自問しないと表面的な情報だけで結論を下してしまいます。講義で学んだ視点、視野、視座といった多角的な視点を通じて、手元の情報が十分かどうか、なぜそのように考えたのかを問い続けることが重要だと理解しました。 情報をどう活かす? 私の所属する部門では、日々膨大なデータや事象が発生し、担当者から報告を受けていますが、私はそれらの情報を点で捉えがちです。学んだ「もう1人の自分を育てる」方法を通じて自問自答を繰り返し、思考の偏りをなくしてフラットに物事を捉えられるよう努力しています。これにより重要なポイントに気付け、本質を捉えられるようになると考えています。 目的は何から整理する? 目的を整理する際には、何が目的で、誰に何をどう伝えるのか、必要な情報をフラットな目線で整理します。情報収集が終わった後で、その情報が十分か、様々な視点で再確認することが重要です。最終的な結論に際しては、自分が正しいと考えるだけでなく、もう1人の自分を作り出し、なぜそう考えるのかと問い続け思考を深めていきます。 他者の意見は役立つ? こうしたプロセスを進めるにあたり、他者の意見も取り入れながら、自分の思考の偏りや浅さを確認し、より良いアウトプットを目指しています。

クリティカルシンキング入門

小さな振り返りが大きな学びに

小さな仕掛けはなぜ? クリシンを効果的に実践するためには、日々の小さな「仕掛け」が大切だと実感しました。例えば、毎日10〜20分の学習時間を確保し、学習後には必ず一行でも振り返りを書くことで、自分の気づきや成長を記録することを意識しています。 どんな学習方法が有効? また、以下のような学習方法を取り入れることが有益だと感じています。まず、ニュース記事を一つ選び、主張・根拠・前提を分けてメモし、100字以内で要点をまとめる方法です。さらに、身近な課題に対してロジックツリーを作成し、「なぜ?」を三回掘り下げることで、根本原因を明らかにし、解決策を複数考える手法や、自分の意見に対して反対意見を三つ挙げ、どの意見が最も説得力があるか比較する練習も取り入れています。 思考力はどう養う? これらの取り組みにより、表面的な情報や過去の経験だけに頼らず、現状の課題を深く掘り下げ、物事の本質を見極める思考力が養われると感じます。 顧客へのアプローチは? 所属する営業部門では、まずお客様の真のニーズを発掘するため、表面上の反応だけでなく、その背景にある要因を徹底的に探ることを実践したいです。お客様が現時点で製品購入を必要と感じていない場合でも、その理由を深く掘り下げ、自発的な購買行動を促す具体的な戦略に落とし込むことが求められます。 論理的提案はどう実現? さらに、常に「なぜ?」と問い続けることで、見落とされがちな問題点を浮き彫りにし、課題の深掘りと仮説検証を徹底する姿勢を持ちたいと思います。これにより、社内ミーティングや商談の場面で、客観的かつ論理的な提案ができると考えています。 判断力はどう高める? 最後に、情報を客観的に分析し、思い込みや経験に頼った偏りを排除することで、判断力のクオリティを向上させることを目指します。これらの学びや取り組みを通じ、日々の業務の質の向上につなげていきたいと思います。
AIコーチング導線バナー

「表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right