データ・アナリティクス入門

数字でひも解く学びの裏側

平均値だけで大丈夫? 平均値だけでは現状を正確に把握できないという点に気づきました。B校の平均年齢が30歳であると、一見「大人中心のスクール」と捉えられがちですが、実際のヒストグラムを見ると低年齢層と高年齢層に分かれており、19~40代が希薄な“空洞”となっていることが明らかです。分布のばらつきを示す指標やデータの可視化の重要性を再認識する結果となりました。 利益ギャップは何? また、利益ギャップの分析では「売上=生徒数×単価」や「費用=講師人件費+販管費」など、各要素をツリー状に分解して寄与度を評価すると、生徒数の減少が最も大きな影響を持つことが分かりました。数字を軸に構造、原因、施策へと論理的に掘り下げるプロセスは、限られた時間の中で根本原因を見出す上で再現性が高く、非常に有用だと感じました。 スクールの違いは? さらに、A校とB校の年齢分布を比較することで、それぞれのスクールの課題と強みが浮かび上がりました。具体的には、A校は働き盛り世代が多い一方、B校は子供やシニア層が中心となっており、主要な顧客層が逆転していることが一目で分かりました。このように、セグメント別に指標を比較することで、各拠点固有の課題や有効な施策が明確になると実感しました。 仮説検証は正確? また、仮説を立てた上で講座の時間帯やキャンペーン履歴、交通網のデータなどを用いて検証を行う、仮説思考とデータ検証の往復が大変重要であると学びました。これにより、先入観に捉われず具体的な打ち手を見いだすことが可能になります。 ヒストグラムで理解? ヒストグラムという可視化ツールについても大きな学びがありました。年齢のような連続変数を度数分布として表示することで、山の位置や高さ、外れ値の存在、平均や中央値とのズレなどを直感的に理解しやすくなり、チーム内の共有や迅速な意思決定につながることを実感しました。 今後の視点は? これらの学びを踏まえ、今後は「平均ではなく分布を見る」「結果から逆算して要因を分解する」という視点を意識し、セグメント別の比較や仮説と検証のサイクルを高速で回すことで、的確な改善策を提案していきたいと考えています。 データ分析は万全? この手法はマーケティングデータの作成や報告のほぼすべての場面で再現性高く応用できると実感しました。例えば、月次KPIレポートではサイト訪問者の平均滞在時間だけでなくヒストグラムを活用し、離脱が集中する滞在秒数帯を明らかにします。また、指標をチャネル別やデバイス別に分解することで、最も寄与度の高いセグメントを特定することも可能です。 キャンペーン対策は? 新規顧客獲得キャンペーンでは、過去の結果を年齢と購買頻度の度数分布で可視化し、コンバージョンが低い空洞セグメントに対して仮説―例えばクリエイティブの不一致や配信時間帯の不適合など―を立て、次回のテスト設計へつなげるアプローチを検討します。 リード改善の鍵は? また、リードスコアリングモデルの改善においては、成約率を平均値だけで評価するのではなく、四半位範囲や標準偏差を活用してばらつきの大きい属性を抽出し、スコアリングの重み付けや閾値を再設定することでモデルの精度向上を図ります。 CX調査で何が? CX調査の報告書においても、NPSの平均値のみならずプロモーター・パッシブ・デトラクターの比率をヒストグラムで示すことで、具体的な要因を定量的に明示し、より効果的な施策提案への流れを作ることができます。 ROI分析の焦点は? さらに、広報や広告などのクロスチャネルROI分析でも、チャネル別平均CPAだけでなく、キャンペーンIDや日次CPAをヒートマップでまとめる手法により、特に偏差の大きい日やクリエイティブを特定し、原因の仮説検証を進めることで、改善アクションの精度を高めることができると考えています。 経営判断のサポートは? 最後に、経営層向けのダッシュボード設計においては、平均売上や総リーチといった数値だけでなく、パレート図や箱ひげ図を取り入れることで、主要顧客層の状況や外れ値の影響を直感的に共有し、部門横断の意思決定を加速させる仕組みを実装したいと考えています。 行動計画は具体的? 具体的な行動計画としては、まず今週中に主要KPIレポートの雛形を改訂し、ヒストグラムや箱ひげ図、パレート図を自動生成するツールを作成します。続いて、来週には主要指標を要素分解ツリーで可視化したダッシュボードを試作し、経営層へのレビューを実施する予定です。その後、2週間以内に過去のキャンペーン実績をもとに年齢や購買頻度でビン分けし、空洞セグメントの抽出ロジックを構築します。 改善プロセスの定着は? 今月末には空洞セグメント向けのテスト設計を完了させ、翌月にはリードスコアリングモデルの再学習と改善を実施する計画です。また、四半期ごとに寄与度分析レポートを自動生成し、改善施策の立案を行い、継続的に学習と検証を社内に蓄積することで、「平均値→分布」「結果→要因分解」という共通プロセスを定着させていきたいと考えています。

戦略思考入門

コストに隠れたリーダーシップの謎

ポーター戦略は何故? ポーターが提唱した企業戦略の枠組みは、企業が競争優位を築くための方法として「コスト・リーダーシップ戦略」「差別化戦略」「集中戦略」の3つに整理されます。これらは、単なるコストや差別化、集中といった表現ではなく、特に「コスト・リーダーシップ戦略」と表現される点に特徴があります。 疑問はなぜ生じる? ここで、ある受講生が持った疑問を紹介します。まず、「コスト戦略」とだけ呼ばれることもありますが、実際には「コスト・リーダーシップ戦略」と表現する理由について、以下の3点の質問がありました。 ① なぜ「コスト戦略」ではなく、コストに業界全体への影響力を暗示する「リーダーシップ」という語が付くのか。 ② なぜ「差別化戦略」には「リーダーシップ」という語が付加されないのか。 ③ なぜ「集中戦略」には「リーダーシップ」という語が用いられないのか。 回答はどう説明する? 回答では、「リーダーシップ」とは、業界全体に大きな影響を及ぼすほどの低コスト優位を示すため、コスト面では特にその要素が強調されるという説明がなされました。一方、差別化はニッチな市場でも十分に成立し得るため、必ずしも主導権が必要とされず、また集中戦略は特定のセグメントへの深い取り組みに重点が置かれているため、両者に「リーダーシップ」は付与されません。 他の戦略との違いは? また、もし「コスト・リーダーシップ戦略」があるのであれば、なぜ「品質・リーダーシップ戦略」や「納期・リーダーシップ戦略」など、他の要素に同様の接頭語が使われないのかという疑問もあります。回答によれば、ポーターは戦略を「コスト」と「差別化」の二軸に単純化しており、品質や納期、ブランド、サービス、デザイン、環境配慮などは、差別化戦略の中に含まれる要素として位置付けられているため、独立した戦略としては扱われないのです。 事例は何を示す? さらに、ポーターの基本戦略3つのうちどれか一つを選べとされる中で、ある大手企業のように高品質でありながら低価格で支持される事例が挙げられることもあります。このケースについては、企業が低コスト構造を徹底することで、その結果として一定の品質やサービスが実現され、結果的に差別化が達成されていると考えられます。たとえば、製造小売一貫のモデルや大量発注によるスケールメリット、定番商品の継続生産による効率化といった工夫が、この両立を可能にしているのです。また、現代における技術革新やグローバル調達の進展も、従来はトレードオフと考えられていた高品質と低価格の両立を実現している要因といえます。 再就職でどう活かす? なお、再就職活動で自分という商品を売り込む際、ポーターの基本戦略の中から「差別化戦略」に焦点を当て、職務経歴書をブラッシュアップすることは有効です。具体的には、以下の点を強調するとよいでしょう。 ・品質:これまでに残した成果物の高い品質をアピールする。 ・納期:短い期間で成果を上げた実績を記録する。 ・価値:自己PRの項目で自分自身が持つ価値について具体的に述べる。 ・安全性:雇用によるリスクが低いことや、安心して任せられる人物である点を示す。 ・サービス:成果物に伴うアフターサービスの充実や、利用者への細やかな配慮を伝える。 ・環境:環境意識を持った取り組みや、持続可能な成果につながる活動実績を強調する。 ・柔軟性:状況に応じた柔軟な発想と対応力を具体的なエピソードで示す。 ・デザイン:もともとのデザインセンスを、実績の画像などを通して裏付ける。 ・機能:機能性を裏付ける特許出願など、数値や実績で訴える。 ・ブランド:社内外で確立されたブランドイメージに貢献した事例を盛り込む。 模倣を防ぐ理由は? また、別の議論として、ある著名なフライドチキンチェーンの味が模倣困難である理由についても考察されました。この企業の味が他社に再現されにくいのは、秘伝のレシピや特殊な調理法、厳格な原材料の選定と品質管理、さらには長年にわたるブランドの積み重ねと消費者の記憶、そして徹底された従業員のトレーニングに起因しています。これらが複合的に連携することで、単一の要素だけでは模倣できない独自の価値が創出されていると分析されます。 戦略実務の活かし方は? このように、ポーターの基本戦略は理論としてのシンプルさを保ちながらも、実務では様々な要素が絡み合って競争優位性が形成されることを示しており、現代の戦略論や個々の事例において幅広い視点が求められていることが理解できます。

デザイン思考入門

プロトタイプで見えた新たな学び

プロトタイプの効果は? プロトタイプの作成は業務上頻繁に行っており、ユーザビリティ設計の視点からその効果を実感しています。実際にプロトタイプを使用したときと使用しなかった場合では、使用していないと手戻りやチーム内の認識ずれが頻発していたのに対し、デザイン画レベルでの認識合わせから始めるようになってからは、こうした影響が大幅に抑えられたと感じています。 チーム統一はどう? また、プロトタイプを活用することで、チーム内での認識の統一が図られ、新たなアイデアが生まれるきっかけにもなります。顧客にプロトタイプを提示する際も、具体的な要望や要件のすり合わせが行いやすく、手戻りや後からの機能追加を防ぐ効果があったと実感しています。 情報設計は何が鍵? ■情報設計・プロトタイピング編として、まず情報設計についてです。伝えたい内容を分かりやすく整理し組み立てるためには、まず課題を明確に整理する必要があります。例えば、売り上げの低下が見られる場合、その原因が新規顧客の減少にあると分析し、結果として新規顧客の開拓を目指すといった流れになります。この際、ターゲットによって情報の伝え方が変わる点も意識すべきです。 問題分析はどう? 次に、問題点を分析し戦略を立てるために、ユーザーストーリーやカスタマージャーニーマップを活用します。そして、必要なコンテンツを洗い出し、ストーリーマッピングやカスタマージャーニーマップをもとに、ページ構成や配置を決定するワイヤーフレームを作成します。このプロセスにより、ターゲットに沿った構成になっているかを検証し、手戻りや機能追加のリスクを未然に防ぐことができます。 コンテンツ整理は? ■コンテンツ設計では、ホームページなどに掲載する情報を目的に合わせて適切に整理します。運営者と訪問者双方の目的を果たすために、必要なコンテンツを洗い出し、競合サイトとの違いを意識しながら差別化を図ることが求められます。業種によってお客様が知りたい情報は異なるため、その点も考慮する必要があります。 アクセシビリティは? ■アクセシビリティ設計では、すべての情報やサービスに年齢や身体的な制約を問わずアクセスできるよう設計することが重要です。また、ユーザビリティ設計やUI設計では、ページ構成、情報アーキテクチャ、ユーザーフロー、機能概要といった要素を総合的に見直し、ワイヤーフレームとモックアップの違いとして、後者はビジュアルデザインまで反映される点にも注意が必要です。 試作品の確認は? ■プロトタイピングでは、開発前に試作品を作成し、機能やデザイン、使い勝手、工程などを確認します。まずは目的や用件を明確にし、アイデア収集と問題点・改善点の洗い出しを行います。次に、有望なアイデアを選定した上でプロトタイプを作成し、実施したユーザーテストからフィードバックを収集。最後に、改善点や要求事項を整理し、次のプロトタイプ作成に反映させるプロセスを踏みます。 成果は出たか? このようなプロトタイピングの取り組みは、手戻り防止やチーム内の認識統一、さらには時間と費用の削減、ユーザーエクスペリエンスの向上につながります。一方で、目的をあいまいにせず、本質的な要求を抽出すること、効率的に制作するために適切な時間を投入することが重要です。 多機能の落とし穴は? 最後に、プロトタイプ作成にあたっては、あれもこれもと多機能を盛り込みすぎると検証が混乱する恐れがあるため、なるべく本質的な機能や要素に絞って検証を行う点に特に注意しています。

データ・アナリティクス入門

問題解決の力を引き出すステップ学び

問題解決の基礎ステップとは? 問題解決のプロセスとして「What」「Where」「Why」「How」のステップがあることを学びました。 最初のステップである「What:問題の特定」では、定量情報を用いて"あるべき姿"と"現状"を比較し、"ギャップ"を明らかにすることが肝要です。このステップを思いつきや決め打ち、闇雲に行うと、以降の工程が無駄になるリスクがあります。 ロジックツリーの活用法は? 次のステップである「Where:問題箇所の絞り込み」では、「What」のステップで特定した問題を起点として、ロジックツリーというフレームワークを用いてMECEに要素を分解します。全体を俯瞰し、問題に対する影響度から見るべき範囲と見なくてもよい範囲を絞り込み、分析の優先順位を決めることが重要です。ここでも思いつきや決め打ち、闇雲に取り組まないことが大切です。 経営資源は有限であるため、短期的な観点ではそれらを前提や制約条件として考慮し、「What」や「Where」のステップを効率的に進めることができます。ただし、経営資源は変化するものであり、中長期の視点で見る際には前提や制約条件として考慮すると網羅性に欠け、全体像を把握できなくなるリスクがあります。 また、「What」「Where」のいずれのステップにおいても、複数の切り口を持ち、複数の仮説を立ててデータにあたることが重要です。切り口の感度や仮説の筋の良さが問題解決の精度に影響を及ぼしますが、これは「どれだけ現場のことを理解しているか」と「どれだけ高い視座と広い視野を持てるか」に依存すると感じました。 問題解決に活かすために これまでの自分の問題解決のアプローチは短期的かつ思いつきや決め打ちが多く、時間的制約という思い込みの中で深く考えることができていなかったと気付きました。これでは、切り口の感度や仮説の筋の良さが磨かれるはずもありません。 次期中期事業計画の策定時に今回の学びを活かします。現中計の振り返りをふまえて次期中計を策定する際、より良い未来に向けて「なぜその目標を設定するのか」「なぜそれを独自性(強み)と考えたのか」「なぜそれをやる or やらないと考えたのか」「現経営資源を考慮した際、なぜその方針が妥当なのか」を分析結果を用いて説得力を持たせたいと考えます。「目指すべき目標を明確にする」「独自性(強み)を認識する」「やることとやらないことを区別する」「目標への道のりの妥当性を示す」、そして戦略の構造化を図る。 関係者との協力をどのように? 周囲の協力を得つつ、関係者と一緒に「高い視座と広い視野」を持ち、三現主義の考え方に基づいて、目的に適したフレームワークを使いながら、一つ一つしっかりと考え進めていきたいと思います。そのために、今まで以上に上位層や組織の枠を超えたコミュニケーションを増やし、今回学んだロジックツリーを戦略の構造化で使うべく、日々の業務で活用し自分のものとしていきたいと思います。 上位層との1on1を通して「高い視座と広い視野」を獲得し、メンバーとの1on1では問題解決のプロセスを意識し、ロジックツリーの利用を促進し「全員が使えるフレームワーク」として根付かせていきます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

データ・アナリティクス入門

早朝のひらめきと挑戦の軌跡

環境の影響は? 影響を受ける環境に身を置くこと、インスパイアしてくれる人との出会い、そして集中できる場所と時間―特に早朝という神のような時間―が、私の学びにおいて大切な要素です。 仮説検証は楽しい? 実際の仕事において、これまでも仮説を立て検証する作業を行っていましたが、最近ではよりデータに基づいた仮説検証の楽しさを実感しています。データから読み取れる事実に裏付けられて、考えうる仮説を突き詰める過程は、新たな発見に繋がっています。 SNSの検証、どう? ソーシャルメディア上のコンテンツに関しても、投稿時間の違いやビジュアルの縦横比、オーディエンスに響く文言など、様々な要素をひとつずつ検証しています。AIDAのフレームワークを用い、質問で注意を引き、アクションへと繋げる流れを意識しながら、次に目を引くキャッチコピーをより印象的にするための勉強も始めました。オファーとそれを得ることで変わる姿を具体的に描くことで、より説得力のある提案を目指しています。 ストーリーズ挑戦は? 次のステップとして、活用が十分でなかったストーリーズ機能に挑戦し、15秒間の映像や24時間表示される小さな花火のような瞬間を打ち上げることを計画しています。また、制作側として発案を重ね、結果を示すことで納得してもらうための明確な目標が必要であることにも気づきました。 文章で感じる影響は? たとえ誰も読まなくても、文字にすることで自分自身がその内容に触れ、影響を受ける事実を実感しています。企画会議の前の段階から、来週のコンテンツを思い描き、寝ながらもどんな内容にするか妄想する中で、誰に届けたいのかを心に描いています。たとえば、電車の中の目の前の人や、全く異なる背景の人々を念頭に置くことで、多様な興味に応えられる提案を考えています。 データで何が分かる? データを示して「これは縦が良い」「このサイズが適切」と提案できるならば、その発言力は格段に高まります。しかし、それ以上に「なぜ伝えたいのか」という純粋な動機が伴っている方が、何よりも楽しさを感じながら取り組めると考えています。生存者バイアスに囚われず、既存の方法に頼らない挑戦―不可能を可能にするための試行錯誤―を続ける日々は、私にとって大きな学びです。 独自の道は正しい? 人と違うアプローチをすることが、これからの時代に必要なのではないかと感じています。自分なりの方法で切り開いているという実感は、自己肯定感にも繋がり、実に多くの発見と成長の糧となっています。 読者に呼びかける? 最後まで読んでいただいた方へ。ぜひ友達になって、他の人がどんなことに興味を持ち、どんな価値を見出しているのかを共有できたら嬉しいです。どうぞよろしくお願いします。

戦略思考入門

優先順位のつけ方で仕事の効率化が加速する

顧客利便性をどう高める? <やらない、を選択する戦略> ①捨てる方が顧客の利便性を増す 1勝9敗。うまくいかないことは早々にやめ、成功する1割にフォーカスすることが重要です。選択と集中ができることで、自社サービスを磨き上げることができ、品質が上がり顧客にも好影響をもたらします。 惰性を打破するには? ②昔からの惰性に流されない 何が惰性なのかを知るには、新入社員などの客観的な視点が役立ちます。また、トラブルを通じて必要不要を精査するタイミングを持つとよいでしょう。 専門家の活用を考える ③餅は餅屋に任せる 自社で行う必要がないことは、専門家に任せる勇気を持ちましょう。 トレードオフをどう乗り越える? <優先順位の立て方> ◆◆トレードオフ 複数の要素がトレードオフの関係にある場合、全てを同時に達成することはできません。そのため、何かを捨てる必要があります。これは日常や仕事でも常に発生します。 効用を最大化する方法は? ①効用の最大化 効用の無差別曲線の考え方を用いて、トレードオフ関係にある要素のバランスをとり、効用が最大化するポイントを見つけることが重要です。 優先順位の明確化をどう進める? ②方向性の明確化 自分たちが何を優先し、何を犠牲にするかを明確にし、重視する要素に全力を傾けることが大切です。 ブレークスルーの道は? ③ブレークスルー トレードオフにある複数の要素を同時に実現できる方法を探ることも必要です。 優先順位の付け方に苦手意識を持っていましたが、今回のワークを通じて、まず情報を整理し、ROIの観点で見ることの重要性を感じました。曖昧ではなく、明確な判断基準を持つことが求められます。また、判断に必要な情報が全て揃わない場面もありますが、その場合には仮説思考を持つことが大切です。思考強化のために、クリティカルシンキングの講座も受けたいと思いました。 撤退の難しさとは? 「当たらない事業はさっさと辞め、成功する1割にフォーカスする」という例がありましたが、やめどきの見極めは非常に難しいと感じました。以前新規事業を進めた際、結局撤退しましたが、もっと早く辞める決断ができたのではないかと考えています。 成果に基づく優先順位設定 施策に対する優先順位をつけるためには、売上や利益などを定期的に振り返る習慣をつけることが重要です。その際、会社として何を重視するか、会社のありたい姿までを考慮し、コミュニケーションを取りながら優先順位を決めていきたいです。例えば、広告におけるブランディングと新規顧客の獲得はトレードオフですが、現在の会社の注力点を踏まえてROIの視点とともに意思決定していくべきだと感じています。

データ・アナリティクス入門

再発見!数字が語る学びのヒント

講義内容は何を学んだ? 必須部分の講義を受ける中で、これまで一部しか活用できていなかった知識に改めて気づくことができました。グループワークの準備で実践した際にも、新たに把握すべき点があるように感じました。 関連動画はどう見る? 関連動画が充実しているため、改めて視聴して理解を深めたいと思います。 代表値の多様性は? 代表値については、単純平均だけでなく、加重平均や幾何平均、中央値が存在することを学びました。また、全体感を把握するための円グラフや、構成要素の割合とばらつきを見るヒストグラム(標準偏差を用いる)の活用も理解できました。 散布図の意義は? 散布図は、2つの変数の関係性を探るグラフとして有効であると実感しました。相関関係と因果関係は切り離して考える必要があり、関係性は相関係数など数式で表現できる点も印象的でした。 度数分析のコツは? 度数分析では、ヒストグラムを用いて集団の特性を把握する方法について学びました。正規分布だけでなく、必ずしも正規にならないケースや、階級幅の取り方(スタージュの公式など)にも触れることができました。 時系列の変化は? 時系列分析では、過去のデータから将来の予測を試みる手法として、横軸に時間、縦軸にデータをとることでトレンドの変化や予測外の出来事の影響を確認する方法を学びました。傾向変動、循環変動、季節変動、不規則変動に注目し、直近と長期のデータ双方に着目する重要性も理解しました。 パレート効果は何か? パレート分析では、20/80や30/70の法則を棒グラフと累積量を示す折れ線グラフで確認する方法を学び、場合によっては10/90となることもあると知りました。 ウォーターフォールは? ウォーターフォールチャートについては、複数の構成要素を階段状に表現し、正負の要素を分けて時系列での変化を詳細に読み取る手法が紹介されました。ただし、場合によっては円グラフや棒グラフの方がシンプルで分かりやすいこともあるため、状況に応じた使い分けが大切だと感じました。 知識活用の方法は? 今後は、単純平均だけに頼らず、円グラフやヒストグラム以外の表現方法も意識して活用していくとともに、学んだ知識を実務に取り入れ、部下や仲間と共有しながら継続的にアウトプットしていきたいと思います。 計算苦手を克服する? 数字や計算式に苦手意識があるため、今後は復習を重ね、参考図書を活用して学びを深めるとともに、グループワークや他の受講生の振り返りを参考にしながら、データの読み取り方を改善し、最終的には実践的な分析を通して意思決定につなげていきたいと思います。

クリティカルシンキング入門

MECEな思考でプロジェクト運営が効率化された実例

物事の理解を深めるには? 物事や起きている事象を正しく理解するためには、様々な切り口で分解し、特徴的な傾向を見つけ出すことが重要だと実感しました。 MECEな切り口を考える意味は? まず、切り口はできるだけ多く考えることが大切です。物事の特徴を見つけ出すためには、様々な切り口での分解が必要です。これを効率良く進めるためには、MECEな切り口を考えることが重要です。もし切り口にモレやダブりがあると、要素同士が重複してしまい、分解しても特徴をうまく捉えられません。MECEであれば要素同士が独立しており、特徴を特定しやすくなります(原因解析であればうまく原因を特定できる)。 どのような切り口が効果的? MECEな切り口には、主に3パターンあります。「層別分解」、「変数分解」、そして「プロセス分解」です。全体を定義したうえで、これらを入口に考えていくと効率良くMECEな切り口を見つけられます。 分解結果をどう活用する? また、物事に影響を与えそうな原因の仮説を持ち、どのような単位で分解すると意味がありそうか考えることも重要です。目的に沿う切り口だけを仕分けて選別します。数値から特徴を見つけるには、分解した結果をグラフによって視覚化することが有効です。視覚化することで、全体を俯瞰し傾向を見つけやすくなり、効率化にも非常に有効です。 エンジニアに必要なスキルは? 数値を分析して物事を正しく捉えるという仕事は、開発業務に従事するエンジニアとして機会があります。今回の学習を踏まえて振り返ってみると、「変数分解」というアプローチを良く取っていたように感じます。この他にも「層別分解」や「プロセス分解」といったアプローチがあることを学んだので、これらのアプローチから新しい切り口を考えるのは有効だと思います。 プロジェクト運営での活かし方は? また、数値分析というわけではありませんが、物事をMECEな切り口で分解して捉えるということ自体が、自身の仕事で役立つと感じています。今では開発業務における数値分析という仕事は減り、プロジェクト運営の仕事が増えています。プロジェクトの方針・方向性を示し運営していくことが必要とされており、MECEな切り口で物事を捉えて説明するということは有効だと考えます。 実践すべきステップは何か? プロジェクトが担当する範囲を明確にし、その中でやるべきことをさらに分解して示していく必要があるので、MECEな切り口で分解していくことを意識したいと思います。MECEの3つのアプローチを入口に、切り口を出していくことを意識して実践していこうと思います。

戦略思考入門

習熟効果が拓く未来の学び

習熟効果は何? 習熟効果について、システム開発の見積もりを作成する際に意識していた点を改めて振り返る機会となりました。実際、習熟効果はプロジェクト期間内に限定されると感じています。プロジェクトのタイミングが変わると担当者も入れ替わり、一貫した効果は出にくいです。定型的な作業についてはテンプレート化を通じて効果が現れますが、十分なナレッジの蓄積が必要であり、規模の経済性と合わせないと大きな影響は期待できません。 多角化の視点は? 講座では、現在のノウハウを活かし異なる事業へ展開する多角化の視点(範囲の経済性)について学びました。個人の立場で多角化を実現するのは難しいですが、自身の強みを再認識し、どの分野に転用できるかを考えることで新たなアイディアが生まれると感じました。今後、どのナレッジが転用可能か、どのような方法で蓄積すべきかを検討したいと思います。 SIerの現状は? 私はSIerに勤務しており、組織が顧客単位で区切られているため、規模の経済性が発揮しにくいと実感しています。業務はプロジェクトマネジメントと開発というテクニカルな作業に分かれ、顧客ごとに文化や慣習の違いがあるため、同じ顧客を継続して担当する場合はプロジェクトマネジメントで習熟効果を発揮しやすい一方、プロジェクトごとに用いる技術が異なるため、テクニカルな面では習熟効果が出にくいと感じています。 技術と経済性は? また、規模の経済性を狙う場合、サービス単位で組織を分割することになると思いますが、その場合、プロジェクトマネジメントでの習熟効果は期待しにくくなる一方、同じ技術を長く使うためテクニカルな面では効果が現れやすくなるでしょう。加えて、同じ技術に固執すると、市場価値を高めたいエンジニアが異なる技術を求めるなど、内部の流動性が生じる可能性も感じています。 組織のバランスは? 全体として、組織構造のバランスが重要だという新たな気づきを得ました。なお、現状の組織に大きな違和感はなく、以下の3点に注力していきたいと考えています。 効果向上の具体策は? まず、プロジェクトマネジメントにおいて習熟効果が発揮されやすい状態を維持するため、実際のアウトプットやドキュメントのテンプレート化、顧客との調整ポイントを整理して転用しやすい仕組みを構築します。次に、テクニカルな業務において、プロジェクトを横断して共通する技術要素や考え方、基盤や設計知識を抽出し、習熟度の向上を図りたいと思います。最後に、新しい技術へのチャレンジやキャッチアップの施策を通じて、範囲の経済性の効果を高めることを目指します。

リーダーシップ・キャリアビジョン入門

実体験で磨くリーダーの未来

学びはどう深める? ライブ授業やロールプレイでは、「自分に引き寄せられる」ことが学びを深める上で欠かせない要素だと実感しました。リーダーシップは日々のあたり前の積み重ねであり、実際の経験が洞察と理論を融合させることで、その効果がさらに高まると感じました。6週間で学んだ内容を実践するための心構えが最後のライブ授業に凝縮され、一度にすべてを実践するのは難しいため、理解した内容を行動に移し、振り返りながら次のステップに進む重要性を改めて認識しました。また、ロールプレイでは仲間同士で本音で意見を交わせた一方、実践の場では自分の考えを伝えるだけでなく、相手の意見を深く理解する必要があると感じ、日頃のコミュニケーションの積み重ねの大切さを実感しました。 理想のリーダーは? WEEK1で記した理想のリーダー像は依然として変わらず、なぜそのように考えたのか、また理想に近づくためにどのような行動をすべきかを理解する上で、本講座の内容は非常に有益でした。当初掲げた、チーム全体が前向きな姿勢で取り組むことで個々の成長が互いに刺激となり、結果として相乗効果を生み出すという目標を実現するため、今後も学びと実践を重ねていきたいと考えています。 相互信頼はどう育む? 目標設定、計画立案、そして振り返りとフィードバックを通じて、業務成果と部下の成長を両立させるためには、相互信頼が基盤となります。そのため、言葉の選び方やタイミングに細心の注意を払い、自分の伝えたいことが部下にしっかり届くよう努めるとともに、部下が気軽に意見を発言できる環境づくりを日常的に意識したいと思います。無意識に行っていた人間関係の構築を体系的に見直し、相手に合わせたコミュニケーションや表現方法を学び続けることが必要です。 関係性はどう変わる? また、関係性の構築においては、同僚や仲間としての立ち位置から、リーダーとして業績や成果を考慮した関係性へと徐々にシフトしていく必要があると感じています。一歩先を見据えて課題を設定し、プロジェクトの行く末を自分なりに推測した上でフィードバックに活かすなど、より戦略的な関係性の構築を目指していきたいと考えています。 低評価はどう響く? 最後に、ロールプレイなど実際の経験を通じて、相互の意識や関係性がどのように変化したのか、また評価面で低い結果が出た場合の被評価者の心情について、具体的なエピソードや対処方法があれば伺いたいです。評価側が誠意を尽くしたとしても、低評価という現実がどのように影響するのか、またそれを乗り越えるためにどのような方法を採ったのか、ぜひお話を聞かせていただければと思います。

データ・アナリティクス入門

成長の瞬間:成長と仮説力の融合

振り返りで何を学んだか? Week1からWeek6までの講義や演習を振り返り、私の中では「つい決め打ちしてしまう」という考えが消え、多くの仮説を立てられるようになりました。これにより、今後の仕事における課題解決や成果につながると感じています。特に、今回のライブ授業での陶芸体験の演習では、様々な仮説や解決策が瞬時に思い浮かび、考えることに対して柔軟になったと感じました。 少しずつ成長していることを実感し、自分が勉強や学ぶことが好きだということを改めて思い出しました。 オウンドメディアでの検証方法は? 弊社のオウンドメディアにおける検証については、まずSEO数値分析やユーザー導線の見直し、SEOコラムのオーガニック増加をMECEで分類し、細かく分析しました。影響力の大きい分類だけでなく、%が少なくても重要視すべき分類もあるかもしれないので、細分化しました。6つくらいの大分類に分けてリライトの優先順位を決めました。 新規ユーザー獲得への取り組み 自社のWebサービスについても、以下のように活用しています。 1. 新規ユーザー獲得導線の増強に活用(Google広告のKWD分析など)。 2. 現在のユーザーに関しても分析し、新規獲得に活用。 まずは、自分のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録増加と正しいKWと属性のユーザー獲得の仮説を検討しました。その後、スケジュールを立ててチームに共有。これにより、新たな発見や課題が出ることを期待しています。 3Cと4Pフレームワークの活用 また、オウンドメディアからの新規ユーザー獲得について、メディアの3Cの内「市場」と「競合」を4P(商品、価格、場所、プロモーション)フレームワークを活用して網羅的に検証しました。既存ユーザーに対しても同様に4Pフレームワークを活用し、ゴールまでの仮説を立てました。 Webメディア運用での問題特定法 自社Webメディアの運用では、現状の問題を特定し、What、Where、Why、Howの各要素に分けて進めました。また、A/Bテストやサイト上でのサムネイル策定、広告でのABテストに時間をかけ、効果を出していきたいと考えています。 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道です。正解はないので、広く視野を持ちトライアンドエラーの精神で、複数の選択肢を視野に入れサイクルを構築。短期・長期のモデルを検討しながら結果をしっかり分析し、最大限の効果が現れるように、その見極めができるようになりたいと考えています。

「影響 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right