戦略思考入門

選択と集中で業務を効率化する方法

本当に捨てる意味は? 「捨てる」という行為は一見すると簡単に思えますが、意外と難しいと実感しました。ただ単に捨てるのではなく、目指すべきゴールを明確にすることで、必要なものと不要なものを選択する必要があると感じました。その際、数値的な根拠を示すことで、選択がより明確になると思います。限られた資源や時間の中で最速で目標に到達するには、「捨てる」ことが非常に重要だと感じました。 業務無駄は疑うべき? 業務効率化の観点でも、「捨てる」選択は必要です。たとえば、「以前からこうだったから」といった理由で行われている業務は、実際になぜ行っているのかわからない場合があります。このような業務には無駄があるため、「捨てる」ことを提案していくべきです。 業務改善の洗い出しは? 【業務効率化のステップ】 まず、自分の業務を洗い出してみましょう。その中で、不要な業務や惰性で行っている業務がないかを考えてみてください。不要だと感じた業務が本当に効果がないのかを検証し、その後、数値的根拠を示すことができれば、上司や同僚に提案を行うと良いでしょう。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

データ・アナリティクス入門

目的意識で切り拓くデータの真実

学びの目的は? 今週の学習で、データ分析は単に数値を集めることではなく、「結果をもとに何を判断するか」を最初に明確にすることが重要だと学びました。目的が曖昧なままでは、比較軸がぶれてしまい、分析が数値の羅列に終始する危険性があると感じます。仮説や目的を起点に、条件の揃ったデータを比較することで、初めて意思決定につながる分析が実現できると理解しました。 改善行動の設計は? また、アプリ開発やマーケティングオートメーションツールを使った1to1配信においても、配信結果を確認する前に「改善すべき行動」や「判断したい内容」を明確にしておくことが大切です。配信の有無やセグメント別など、事前に比較軸を設計した上で効果検証を実施し、その結果を次の施策判断に生かすプロセスを業務に定着させたいと考えています。 分析手法の信頼は? さらに、現状の分析方法が的確であるのか、本来比較すべき指標や切り口は何か、判断を誤らないためにどの点に注意すべきかについて、実務視点での失敗事例も交えながら意見を共有し、議論を深めていきたいと思います。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

データ・アナリティクス入門

なぜとどうで解く課題の本質

なぜWhyとHowを重視? 今週は、What→Where→Why→Howの流れの中でも、特にWhyとHowの部分に重点を置いて学習しました。問題解決のプロセスとして、まずプロセスを細かく分解し、その問題に至る各課題について、なぜその状況に至ったのかを仮説を立てながら考える手法が印象に残りました。 なぜ原因を深堀? また、複数の原因を明確な根拠に基づいて絞り込むことが、問題の本質を理解する上で非常に大切だと感じました。実務においても、売上やサイト訪問数などの行動変容と、認知度や利用意向といった態度変容の両面から施策を検証し、その結果に対してなぜ売上が伸びたのか、認知度が上がったのかと、丁寧にプロセスを分解することの重要性を再認識しました。 なぜ多角的検証? さらに、施策の結果をすぐに結論づけるのではなく、各プロセスを細かく見直し、仮説に基づいて多角的な切り口で施策を検討する姿勢が大切だと感じました。そのため、A/Bテストや簡易調査などを定期的に行い、施策の効果や課題を可視化して検証することが求められると学びました。

データ・アナリティクス入門

数値で読み解く問題解決の道

本当の問題は何? 問題が生じると、すぐに解決策を講じたくなるものですが、まず「何が問題なのか」や「その原因はどこにあるのか」を明確にすることが重要です。何気なく動き出すと、的外れで効果のない対策に陥る恐れがあるため、「what」「where」「why」「how」の順に問題解決のステップを踏むべきだと感じました。 ギャップはどこにある? また、問題を特定する際には、望ましい状態(あるべき姿)と現状とのギャップに着目することがカギだと学びました。さまざまな数字に着目することで、そのギャップを具体的に把握できることも実感しています。 理想は本当に正しい? さらに、自身の業務を振り返ったとき、まず「あるべき姿」が明確に設定されているかどうかに疑問を感じる場面があると気づきました。ギャップの検証が可能な状態で理想の状態を決め、その認識を他者と共有しなければ、正確な問題解決は実現しにくいと思います。 今後の対策は? 今後は、この点を意識して取り組むことで、より効果的な問題解決に結びつけていきたいと考えています。

データ・アナリティクス入門

仮説で解く毎日の課題

仮説の意義は何? 仮説を立てる意義について改めて考える機会となりました。これまで、なぜ仮説を作るのかという基本的な問いに対して十分な検討を行ってこなかったと実感しています。 仮説の種類は何? 仮説は大きく2種類に分けられます。一つは、ある論点に対して仮の答えを提示する結論の仮説、もう一つは具体的な問題の解決を促進するための問題解決の仮説です。どちらの場合も、仮説を用いることで意思決定の正確さが向上し、重要な問題意識を高める効果があります。また、仮説をもとに検証プロセスを回すことで、行動のスピードアップや精度向上にもつながると考えます。 検証の進め方はどう? 特に、具体的な問題解決の仮説を立てる際には、「where(どこで)」、「why(なぜ)」、「how(どのように)」というフレームワークに基づいて検討することが有益だと感じました。このフレームワークは、業務に限らず日々の様々な事象に適用可能であり、毎日ひとつずつ仮説を考えることで、日常の幅広い問題に対して効果的な解決策が見いだせると期待しています。

データ・アナリティクス入門

論理で切り開く学びの4つの道

どんな順番で進む? ロジック重視のアプローチとして、まずはWhat・Where・Why・Howの順に段階的に思考を進めることが基本となります。最初に「What」で、例えば売上が前年比で10%減少しているといった事実を明確にし、次に「Where」でどの地域や商品カテゴリでその現象が発生しているのかを特定します。 改善の秘訣は何? 続いて「Why」で、来店数の減少やリピーター率の低下といった具体的な要因を洗い出し、最後に「How」で、どのように改善策を実施していくかを検討します。この際、要因や改善策を「顧客側の要因」「商品力の要因」「販売手法の要因」など重複なく漏れなく整理するため、MECEの視点が重要となります。 成果はどう生まれる? このプロセスは、感覚に頼らず事実に基づいた論理的なアプローチを実現し、問題解決に向けた具体策を確実に策定するためのものです。分析結果は定期的に共有し、周囲と認識を一致させながら、仮説→検証→実施→再検証のサイクルを迅速に回していくことで、持続的な成果の創出を目指します。

データ・アナリティクス入門

実践で拓く改善と挑戦

A/Bテストの意義は? A/Bテストは、対象をA群とB群に分け、同時期に検証を実施する比較手法です。工程が少なく導入しやすいというメリットがありますが、比較するポイントを明確にし、他の要素を同一条件に保つ点に留意する必要があります。 時期の違いは問題? テスト対象が別の時期に実施されたものや、大きく異なる要素が含まれている場合、正しい比較が行えなくなるため、十分に注意しなければなりません。 品質会議の狙いは? また、品質管理や作業難易度に関するミーティングでは、参加者にアンケートを実施し、普段の作業の正確さや改善への意識について意見を集めることで、今後の品質管理ミーティングや改善提案に役立てることができると考えています。 学びをどう活かす? 今後は、A/Bテストを活用できるテーマとターゲットを決定し、本日の学びを実践していく予定です。仮説を立てることを前提とし、提案内容が部門方針に合致しているかを意識するとともに、ターゲットが大きく異なる複数の要素で構成されていないことを確認して進めていきます。

データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

データ・アナリティクス入門

仮説を実践!A/Bテスト現場記

目的は明確ですか? まず、A/Bテストを行う際は、目的と仮説を明確にすることが大切です。検証項目をしっかりと設定した上で、テスト対象を1つの要素に絞り、無駄な混乱を避けます。 期間は統一ですか? また、A/Bテストは必ず同じ期間内で同時に実施する必要があります。異なる期間で行ってしまうと、テスト以外の環境要因が影響し、正確な検証が困難になるためです。 仮説の幅広げる工夫は? キャンペーンメールの場合も、基本として要素を一つに絞り、同一期間での同時実施を心がけています。しかし、仮説を明確にするのが難しく、有意差が出にくい状況もあるため、フレームワークを活用して仮説の幅を広げる工夫を行っています。 最適仮説は何ですか? その上で、自分が実施したいキャンペーンにおいては、コンバージョン獲得のため検証すべき仮説を、フレームワークを用いて整理し書き出します。そして、どの仮説が最も効果的なのかを考慮しながらキャンペーンを実行し、結果をもとに検証と改善のサイクルを繰り返すことで成果を追求しています。

クリティカルシンキング入門

具体と抽象で織りなす理解の旅

新しい考え方は? これまで、フレームワークやその活用経験が物事を考えるために必要だと考えていましたが、今回の学びで、根本的な考え方自体を見直す必要性に気づかされました。 分解のコツは何? 特に、物事を分解して考える際には、具体的な面と抽象的な面のバランスをとりながら、上下左右に視点を移動して検討する手法が印象的でした。この方法により、考え方に偏りが生じるのを防ぎ、全体像を捉えやすくなると感じました。 比較検証はどう考える? また、MECEや3つの視といった考え方は、他社製品や技術との比較検証にも有用だと思います。MECEで必要な比較項目を洗い出し、3つの視では相手に合わせたクリティカルな要素を抽出することで、プロとコンの両面を効果的に整理できると考えています。 意見交換で工夫は? これらの手法は、提案や報告、さらにはプロジェクト内での意見交換の際にも役立つと実感しました。相手に合わせたアプローチを行うためには、柔軟に視点を変え、考え漏れがないよう努めることが不可欠であると感じています。
AIコーチング導線バナー

「本 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right