データ・アナリティクス入門

表面を超えた先の学び

本当の原因はどこ? 問題発生時には、表面的な事象に惑わされず、その根本原因を追求することの大切さを実感しました。今回のケースでは、売上低下の原因が巡り巡って採用施策の強化に結びつくとは、当初は想像もしていませんでした。 部署間の連携はどう? 目の前で起こっている現象は、複数の事象のごく一部に過ぎないと理解しました。そのため、自部署内の要因だけに着目するのではなく、関連部署との連携にも注意を払い、視野を広く保ちながら検証する必要があると考えています。 全体像を見渡せていますか? まずは、全体像を俯瞰し、どこでどのように配置され、活動が行われているのかを把握することから始めました。その上で、ボトルネックとなっている部分に関連する事象を丁寧に確認し、検証を進めることで、有効な仮説を構築できると感じています。

データ・アナリティクス入門

分析で見つけるビジネス成長の鍵

明確な分析目的を設定するには? 分析を行う目的を明確にし、必要なデータを適切に特定する重要性を再確認しました。指示する側とされる側の間で、作業前に前提条件にずれがないか確認する必要性も理解しました。このプロセスは、KPI設定や検証の際にも当てはまります。設定した目標が会社の方針と一致しているか、常に確認することが求められます。次回の対策を考えるためには、分析に必要なデータにズレがないかを検証し、そのデータが本当に有効かどうかを追求します。 ターゲットの再選定は必要? また、会社としてターゲットをどこに設定するかを再選定する必要があります。現在の顧客の業種別売上傾向やエリア別売上を詳細に分析し、各エリアの特性や注力すべき業種を見極めます。また、機会損失が発生している箇所を特定し、適切な対策を講じることが求められます。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

クリティカルシンキング入門

振り返りから見える成長の瞬間

自分で手を動かす意義は? 与えられたデータをただ眺めるだけでなく、必ず自分自身で手を動かし、さまざまな観点から検討することが大切です。一つの切り口だけでは見落としがあったり誤った結論に至る可能性があるため、複数の視点をもって仮説を立て、検証する必要があります。まずは、全体をどのように定義するかを明確にしてから、データの分け方を考えてみてください。そして、その考え方が本当に正しいのか疑う姿勢も忘れずに持つようにしましょう。 データが提案の鍵か? 通常の業務でデータを扱う機会があまりない場合には、まずクライアントとの会話の中で参照できるデータについて触れてみると良いでしょう。提案の際、市場や現状の理解を示すためにも、データを活用しながら仮説をもとにさまざまな切り口で検証していくことが求められます。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

データ・アナリティクス入門

仮説が切り拓く多彩な世界

どう仮説を活かす? 仮説を立てることで、物事に対して多角的なアプローチが可能になります。偏った考えに陥らず、さまざまな観点から状況を把握することにより、自分自身の理解を深めるとともに、他者を説得するための材料としても活用できるメリットがあります。例えば、「こうだったら、こうではないか?」や「その逆はどうか?」といった問いかけを行うことで、あらゆる角度から物事を捉える習慣を身につけることができます。 ビッグデータ検証は? ビッグデータを扱う際には、仮説の重要性が特に高まります。決めつけることなく、あらゆる可能性を念頭に置いて分析することで、物事の本質に迫ることができるのです。また、このアプローチは、他者への提案や情報の共有にも役立ち、柔軟な発想を促す大切な手法と言えるでしょう.

クリティカルシンキング入門

反復と直感で本質を探る

振り返りはどう捉える? 今回の学びを通して、反復練習やアウトプットを行わなければ知識がすぐに薄れてしまうことを実感しました。そのため、定期的に振り返り、考えを整理し、積極的に伝えることの重要性を改めて感じました。 直感と理性の対話? また、直感や勘だけに頼らず、それを具体的な言葉にして表現することが大切だと気づきました。その裏付けが何であるかを考え、直感が本当に正しいのかを検証することは、日常生活でも有効な行動だと感じています。 自分を見つめ直す? さらに、他人の意見を参考にするだけでなく、自分自身の直感に対しても疑問を持ち、本質的な課題が何であるかを追求する姿勢を忘れずにいきたいと思います。今回学んだことを実践し、今後の行動にしっかりと活かしていきます。

戦略思考入門

数字で見極める捨て方改革

なぜ捨てるのが難しい? これまで、自分は捨てることを非常に難しく考えていたという実感を改めて持ちました。過去からの関係性を重視するあまり、本当に必要なものとそうでないものを見極めることが難しかったのだと思います。 どうやって選び取る? しかし、今回、明確な判断基準として数値やデータを用い、何を優先し何を捨てるのかを選択することが可能であると気付きました。売上拡大や利益率向上を目指して多くの改善テーマに取り組む中で、従来から掲げてきた改善テーマについても、意味を再検証する必要性を感じています。具体的には、以前から実施していた特定のコスト削減策について、他の施策と数値やデータで比較し、優先順位の低いテーマは見直す判断に至りました。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

戦略思考入門

差別化の鍵は強みの見極め

なぜ現状分析が必要? 講義を通じて、ただ単に顧客目線で考えるのではなく、差別化に向けては競合を意識し、実現可能性と持続可能性を検証することが重要であると改めて学びました。まずは、自社の現状を正確に把握するためにVRIO分析を実施し、その結果をもとにポーターの基本戦略を用いてターゲット顧客を絞り込む方法が効果的だと感じました。 どう優位性を確認? また、自社の優位性を明確にするためには、3C分析やSWOT分析と併せてVRIO分析を進めるのが有用であると思います。システム開発が本格化すると、柔軟に対応できる部分が限られてしまうため、提案活動の段階で自社の強みを十分に活かした提案を行うための準備が必要だと考えています。

戦略思考入門

市場を読み解く戦略のヒント

3C分析のポイントは? 差別化を図るためには、まず3C分析が重要であると感じました。顧客のニーズを把握するとともに、自社と競争相手とのポジショニングを明確に整理する必要があります。 VRIO分析は何を示す? 加えて、VRIO分析を活用して、経済的な視点から自社の強みや資源の有効性を検証することも欠かせません。 新工場管理の意義は? さらに、新たな顧客との取引が増加している現状では、従来とは異なる工場管理力が求められており、その戦略の決定が急務となっています。 基本戦略の選択は? 最後に、ポーターが提唱する基本戦略の中からどの戦略を採用するかを、即座に実行に移すことが重要だと考えています。

「本 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right