デザイン思考入門

本当に必要な一手に気づく

顧客認識はどう? 日々の業務や部門単位の営業戦略、さらには会社全体の経営判断という異なる判断範囲の中で、共通して大切なのは、誰を顧客とし、どの商品を通じて価値を提供するかという認識を社員全員で共有することだと学びました。 プロセスの見直しは? この気づきにより、単に作業として形骸化していたプロセスであっても、本当に必要なものかどうかを検証することが可能になりました。すべての判断には目的や背景の理解が不可欠であり、それを明確にしなければ、数ある情報の中から適切な選択をすることは難しいと感じています。また、作業の目的や期待される効果、全体の流れを伝える重要性も強く実感しました。 理解の違いはどう? さらに、同じ情報を見た場合でも、受け取り方や理解度は人それぞれです。社員全員が一定以上の理解と成果を発揮できる状態を目指すためには、どの部分が思考や行動のボトルネックになっているのかをしっかりと検証することが必要だと考えています。

クリティカルシンキング入門

数字を超えた視点の冒険

数字の見方は本当か? 数字をただ見るのではなく、視覚化やグラフ化することで、より多角的な意味を見出すことができると実感しました。また、MECEの基本的な考え方についても理解が深まり、モレやダブりを意識することの重要性を学びました。「本当にそうか?」と問いかけるプロセスが、短絡的な結論を避ける上で大切だと考えます。 疾患領域はどう選ぶ? 新規薬剤や新たな事業領域の開発を考える際、まずは対象となる疾患領域を絞り込む必要があります。さらに、その絞り込んだ後のポピュレーションや、疾患の重篤度、患者数、事業性、競合環境など、さまざまな切り口からニーズの有無を検証することが求められます。 課題分解は的確か? また、課題をどのように分解し、分解が適切に行われているかを意識することも重要です。一人で考え込むのではなく、メンバー間で様々な視点を共有し、切り口のアイデアやモレ・ダブりの有無を話し合いながら進めていくことが効果的だと感じました。

戦略思考入門

限られた資源で成果を出す秘訣

優先順位はどう判断? 限られた資源で成果を最大化するためには、まず優先順位を明確にして、取り組むべきこととそうでないことを判断することが重要だと感じました。 断捨離の決断は? また、何かをやめる際にはエネルギーが必要ですが、現状が本当に最適かどうかを中長期的かつ全体最適の視点で客観的に検証し、データに基づいて判断することが求められます。必要と判断した場合は、勇気を持って決断することが大切です。 作業の見直しどう? 日々の業務の中では、ただ習慣として続けていることや無駄な作業がないかを常に確認し、他の方法で代替できないか、または廃止できないかを見直すことが必要です。 業務配分は最適? さらに、生産性向上が求められる現状においては、限られたリソースをより効率的な業務に配分するため、客観的なデータを活用して何を選択し、どの業務を見直すべきかを検討し、その結果を事業計画に反映させていきたいと考えています。

データ・アナリティクス入門

仮説検証で開く課題解決の扉

本質はどう捉える? 問題解決プロセスでは、「何が問題なのか(what)」「どこに原因があるのか(where)」「なぜその問題が発生しているのか(why)」の3点に対して、徹底的に検証することが重要であると学びました。 原因をどう探る? また、whyの部分については、3Cや4Pといったフレームワークを活用することで、より具体的な原因の特定と分析が可能になることが印象的でした。各アプローチにおいて、仮説を立て、既存または新規のデータを用いて検証する作業が鍵であると感じています。 新たな視点は? 特に、売上データの結果は複合的な要因が重なっており、一概に原因を絞るのは難しいという現実があります。それにも関わらず、自分なりにここが原因だろうという仮説を立て、検証を通して新たな視点や解決策につなげることの重要性を実感しました。今日学んだフレームワークを活用しながら、今後もさまざまな課題にチャレンジしていきたいと思います。

データ・アナリティクス入門

仮説から始まる発見の物語

なぜ振り返りするの? これまでの学びを総まとめする中で、問題解決のステップと仮説志向の重要性を再認識しました。一見当たり前に感じることも、改めて意識することで新たな発見があると実感しています。また、他の受講生の意見に触れることで、自分のアプローチに不足している部分を確認することができました。 有意な検証方法は? もともとの課題として、A/Bテストにおいて有意差が出る仮説を立案する必要があるため、「要素は一つ」「同じ期間で同時に」という基本に加え、仮説を明確にすることを意識したいと考えています。そのため、フレームワークを活用して仮説の幅を広げる取り組みも進めています。 効果的な施策は? さらに、自分が実施するキャンペーンにおいて、コンバージョン向上のために検証すべき仮説をフレームワークを使って洗い出し、その中で最も効果が見込める仮説をもとにキャンペーンを実行・検証するサイクルを繰り返していくことが今後の課題です。

データ・アナリティクス入門

小さな気づき、大きな成長への道

ABテストの条件は? ABテストでは、条件を揃えることの重要性を改めて認識しました。web広告の出稿時、期間は統一していたものの、画像やメッセージなどの要素がバラバラになっていた点は反省材料です。5パターンから2パターンに絞ったときに優位差が出なかったことから、最初から2パターンで検証すればよかったと感じました。今後は、各条件をしっかりとそろえることを最優先に、広告出稿に臨みます。 部下の進捗状況は? 初めてプロジェクトマネジメントに取り組む部下が、全体像の把握に苦労している様子が見受けられます。全体スケジュール表を提出させても、個々の業務に追われ、検討した案を1週間放置してしまうケースが発生し、本人も周囲も内容を忘れてしまったため、再び考え直す必要が生じています。この状況がプロジェクト全体の進捗に影響しているため、今後はプロセスの各段階を理解することを重点的に指導し、円滑な進行を目指していきたいと思います。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

クリティカルシンキング入門

課題を見える化!効果的な細分化の技術

解くべき問いを見つけるには? テーマが決定すればそれが解くべき課題だと考えていましたが、実際にはそのテーマを細分化し、本当に解くべき問いを見つけ出すことが重要だと気付きました。細分化する際には、解決したい姿や仮説を立て、それをもとに細分化していくと効果的だとも感じました。 理想の姿をどう描く? プロジェクトで計画を立てる際には、ただタスクを洗い出すのではなく、理想の姿を思い浮かべ、それを実現するための実現要件を意識しながら分解していきたいと思います。これにより、一つ一つのタスクの実行結果が仮説検証のためのインプットとなり、より早く正確に目標を達成できると感じます。 実現要件の整備方法は? まずは考えるテーマを決定し、その後、実現方法を考えるのではなく、実現要件を考え、それぞれの要件に対して現状を整理します。そして、解消すべき課題の特定とその解決策を考えることを習慣化したいと思います。

データ・アナリティクス入門

比較で解く原因の奥義

原因をどのように特定? 問題の原因を特定するためには、まずプロセスに分解し、そのプロセスごとに原因であるという仮説を立て検証する必要があると学びました。特に、条件を同じにして比較対象の要素をひとつだけ変更するA/Bテストの手法は、原因検証に非常に有効であると理解しました。この「分析とは比較である」という本学習の原則は、派生していっても常にその根本に忠実でなければならないと感じました。 多角的な検証の鍵は? また、問題の原因を直感で捉えるのではなく、What、Where、Why、Howの4つのステップで明確に切り分けることで、決め打ちにせず多角的な検討が可能になると実感しました。これにより、他者への仮説説明もしやすくなると同時に、A/Bテストを実施する際にもどの要素を置き換えるかを明確にしてトライアンドエラーのプロセスを進めることができ、より納得のいく検証が行えると感じました。

データ・アナリティクス入門

仮説力が拓く学びの世界

仮説の基本って何? 「仮説」とは、ある論点に対する仮の答えであるという基本から学びました。目的に沿った仮説を立て、必要に応じて複数の仮説を検討することで、網羅性を持たせる手法が重要だと実感しました。 分類で何が見える? また、仮説は目的に応じて「結論の仮説」と「問題解決の仮説」に分類できるという点に注目しています。こうした考え方を取り入れることで、仕事の検証マインドが向上し、説得力も増すことを感じました。さらに、ビジネスのスピードや行動の精度を上げる効果にも期待が持てます。 戦略にどう活かす? 実際に、分析したデータをもとに売上傾向や市場トレンドを踏まえた仮説を立てることで、戦略を具体的に策定できる点に意義を感じています。複数の視点から仮説を立てることで、より多角的な分析が可能になるため、さまざまな場面で仮説の精度を向上させる取り組みが非常に有効だと考えています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

「本 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right