データ・アナリティクス入門

動きながら考える仮説の極意

どんな仮説が必要? 仮説とは「ある論点に対する仮の答え」であり、答えである以上、いい加減な内容では通用しないと実感しました。どのような仮説を立てるかが極めて重要であり、良い仮説を構築する方法について疑問が生じました。 原因をどう究明? また、課題解決の仮説は、単に「どこに問題があるか」と考えるだけでなく、問題箇所が特定できた場合でも、その原因を十分に掘り下げるプロセスが不可欠であると感じました。徹底した分析によって、問題の本質に迫ることが大切だと思います。 反論はどう除外? さらに、仮説はそれ自体以外の反論を排除しながら構築すべきだと考えます。まずは対象となる事象(What)を明確にしたうえで、問題の所在(Where)を適切に分解し、抜け漏れのない形で仮説を立てないと、説得力を持った論点整理は難しいのではないかと感じました。 対応をどう構築? 加えて、ある事象に対して対応時間が長期化しているという問題を例に考えると、What自体は把握できているものの、問題の具体的な所在(Where)に対する仮説が立てられていない現状があります。問題点をMECEに分解しながら仮説を検証するためにも、現場の実情を踏まえてまずは動いてみるというアプローチも一つの方法ではないかと思います。 試行で見える答え? こうした見解から、動きながら仮説を立ててみる方法が有効なのか、またその過程で優れたインタビューの実施にも注力する必要があるのではないかと考えています。同じように、受講している皆さんもどこに問題があるのか(Where)の見極めに悩まれているのではないでしょうか。まずは実際に動きながら仮説を試してみることが、より良い解決策へとつながると感じました。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

戦略思考入門

ターゲット特定で差がつく!競合分析の極意

ターゲットは誰? 差別化を考える際に重要なのは、ターゲットを明確にすることです。これは、誰に向けたものなのかをはっきりさせることで、非常に有益な学びとなりました。差別化をするためには、広い視点で情報を整理することが前提条件となります。たとえば、フレームワークを使って対象をもれなく整理することが効果的です。 顧客視点はどう? また、顧客視点で誰が競合となりうるのかを把握し、価値あるアプローチを模索することも重要です。焼肉店の競合が回転寿司であるように、同業界に限らず、異なるものが顧客に価値を提供し、競合の一部となり得る場合もあります。そのため、施策を立案する際には実現可能性と持続可能性、すなわち簡単に真似されない工夫が必要です。 両軸の価値は? 私たちのサービスはToBとToCの両軸にまたがるため、それぞれの軸でターゲットが誰であるか、どのような価値を提供できるかを考えることが求められます。そして、その上で具体的な施策を検討する必要があります。自部署にこれを当てはめる際には、企業を顧客としてターゲットが価値を感じるかを深掘りし、差別化を進める方法を模索します。 競合の広さは? 競合に関しては通常、同業他社に注目しがちですが、それだけでなく、広い視野で把握することも欠かせません。差別化を行う前に、VRIO分析を通じて自部署にどのような強みがあるかを確認し、それがどのように差別化につながるかを整理します。 自部署の強みは? 自部署のVRIO分析に基づき、提供できる価値を明確化し、差別化戦略を検討します。また、これを自部署内でアウトプットする機会を設け、積極的に意見を集めることで、さらなる深掘りを進めていきたいと考えています。

戦略思考入門

真似されず輝く自社の魅力

講座受講の本当の意味は? 今回の講座を受講する理由は、経営戦略の学びが自身の業務にも深く関係している点です。特に、顧客にとって価値があり、選ばれるための差別化が重要な視点だと感じています。 差別化の本質は何? これまで「差別化をしたい、考えたい」とよく思っていましたが、具体的に深掘りする方法が分からず、また「真似されるな」と主張していたものの、真似されるものはそもそも差別化とは呼べないと気付きました。加えて、差別化を実現するにあたり自社の強みを意識する中で、真似できないソフト面が今の組織の大きな強みであると認識し、これを大切にしていきたいと考えています。 VRIOを活かす秘訣は? また、VRIOの考え方が非常にわかりやすかったため、さっそく現業務に活用したいと思います。自分の事業内容の見直しの際に、特に情報配信やイベントでの差別化の方向性を模索していたため、学んだ内容が具体的なヒントとなります。さらに、女性対象に情報配信や起業家支援を行う事業でも、企画から実施、告知、集客に至る各段階で役立つと感じました。 集客はどう取り戻す? 近年、SNSの台頭などで仕事の依頼が減少し、売上が低下しているため、改めてフレームワークを活用し、独自のサービスを打ち出す必要性を感じています。そこで、まずスタッフミーティングで集客に関する概要を伝え、各自に「なぜ集客が必要か、どのような手段が考えられるか」を宿題として考えてもらいます。 実践後に何を考える? その後、スタッフ全員で実際のワークを行い、まとめた内容を可視化して、とりあえず実践に移します。実践した後は反省点を振り返り、改善に努める予定です。具体的なテーマとしては、夏休みイベントを取り上げています。

リーダーシップ・キャリアビジョン入門

リーダーシップの本質を学び、成長する方法

リーダーシップの要素は何か? リーダーシップは主に行動、能力、意識の3つのカテゴリから成り立っています。特に行動は外部から見えやすく、フォロワーはリーダーの行動をよく観察します。一方で、能力や意識は直接的にはリーダーシップの評価対象にはなりにくいです。 リーダーシップはどう模倣する? リーダーシップは模倣可能です。他のリーダーの行動を参考にし、それを自身のリーダーシップに取り入れることができます。また、リーダーが配下メンバーを導くだけでなく、その配下メンバーが将来的にリーダーになることを導く視点も重要です。特にシニアメンバーに対しては敬意を持って接することが求められます。 若手に対するリーダーシップの接し方は? 若手メンバーに対しては、彼らの世代特有の価値観や労働の重視度がシニア世代とは異なるため、丁寧にヒアリングし、適切な接し方をすることが大切です。リーダーシップを高めるためには、常に能力の研鑽や意識の変化に取り組むことが必要です。 業務でのリーダーシップ発揮法は? 具体的なリーダーシップの発揮方法としては、お願いした業務においてリーダーシップを示すアドバイスや自身の考え方を共有する方法があります。また、上司が行っているリーダーシップ行動を観察し、それを自身で真似することも効果的です。 専門領域の学びをどう深める? 専門領域とポータブルスキルの学習を深めることは引き続き重要です。特に新しいプロジェクトやワーキンググループ(WG)では、上位ポジションの振る舞いを注意深く観察し、真似できるポイントを探すことが求められます。これは次回の資材改版とりまとめ整理業務においても、リーダー役にリーダーシップの考え方を共有することで役立ちます。

データ・アナリティクス入門

問題解決のステップで成果を出す方法

問題解決プロセスの重要性は? 問題解決のプロセスについて学んだ内容を振り返ります。 まず、問題解決のプロセスには、以下の4つのステップがあります:What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているのか)、How(どうするのか)。この順序を守りつつ、ステップを踏んでアプローチすることが大切です。ただし、このステップは必ずしも順番通りに進むわけではなく、行ったり来たりすることがあります。 問題を定める方法とは? 最初にすべきことは、問題を定めることです。あるべき姿と現状とのギャップを把握し、数字を使って売上と予測を比較することで具体的にギャップを捉えます。そのギャップの間で現場で何が起きたのかを確認することも重要です。 フレームワークの活用法を知る 次に、問題がどこにあるのかを整理する際には、ロジックツリーやMECE(Mutually Exclusive, Collectively Exhaustive)などのフレームワークを使うと、漏れなく検討するのに有効です。 問題解決の優先順位をどうつける? 現在、サービスに対するアンケート分析を行っていますが、対象が広範囲であるために論点がバラバラになり、打ち手も行き当たりばったりになっていました。今回学んだ方法を使い、まず問題を複数洗い出し、その中で本当に解くべき問題に優先順位をつけ、チーム内で合意を得ることが必要です。そして、解くべき問題について、学んだ各ステップを踏んで考えます。 MECEとロジックツリーの実践 考える際には、MECEとロジックツリーを使ってみましょう。まず手を動かして使ってみることで、理解を進めることができるでしょう。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

マーケティング入門

訪日観光アプリ成功の鍵を探る

観光案内アプリのセグメンテーションとは? 観光案内アプリの事業化を検討する過程で、特に注意が必要だと感じたのは「セグメンテーションの切り口」です。訪日外国人旅行客を優先すべき顧客層として仮定しましたが、最終的には国内旅行者にも対象を広げたいと考えています。このとき、以下の変数を明らかにし、「購買行動に差が出る切り口を選ぶ」ことが重要だと学びました。 - 人口動態変数(例:年齢や性別) - 地理的変数 - 心理的変数(例:趣味、志向) - 行動変数(例:使用頻度) 6R基準でのターゲティングの重要性 ターゲティングについては、6Rという評価基準を新たに知りました。特に、Rankでは市場規模に加え、イノベーターやアーリーアダプターといった火が付きやすい層を選ぶ必要があると再認識しました。 - Realistic Scale - Rate of Growth - Rival - Rank(優先順位、影響力の強さを考慮) - Reach - Response これらの基準は、市場の魅力と自分たちが勝ち残れるかどうかを比較しつつ選びます。 データを基にしたセグメンテーションプロセス セグメンテーションはデータに基づいて行います。まず、「購買行動に差が出る切り口」を仮説立てし、それに応じてデータを取得します。その後、ターゲティングやポジショニングを以下の手順で進める計画です。 1. セグメント別の市場規模、成長率を推定する 2. 推定結果に優先順位をつける 3. 最も優先する市場について競合との差別化を仮決めする(ポジショニング) 4. 実際に検証する この一連のプロセスによって、より的確で効果的なアプローチが可能になると考えています。

データ・アナリティクス入門

現状整理で未来を切り拓く

状況整理はどうする? 問題解決の基本アプローチとして、まず「What」の段階で直面している状況を整理することが大切です。現状と「あるべき姿」とのギャップを把握し、単に「出願数が少ない」といった表面的な指摘に留まらず、より深い原因を明確にする必要があります。その際、状況の詳細な把握により「Where」を特定し、分析対象を絞り込むことで、無駄な検討範囲を排除していきます。 原因究明はどうする? また、次のステップとして、WhyやHowといった視点から問題の原因やその解決策にアプローチします。事業成長に直結する知財戦略の立案では、現状認識が不十分な段階で安易な解決策に至ってしまわないよう、各ステップを徹底的に深堀りすることが求められます。そうすることで、問題の核心に迫り、より的確な対策を打ち出すことが可能になります。 ロジックはどう活かす? さらに、ロジックツリーの活用により、問題を階層的かつ体系的に分解する手法も重要です。複数の視点から課題を整理し、解決策を絞り込む際には、「もれなく、ダブり無く(MECE)」を意識しながらも、実践では過度にならないよう適度に活用することがポイントとなります。多様な切り口を持つことで、問題の傾向や根本原因が見えにくくなるリスクを回避し、よりバランスの取れた分析が可能となります。 出願戦略はどう進む? 例えば、出願のためのアイディア発掘や出願計画においても、上記の手法を取り入れることで、各ステップの整理が不足している現状を改善する狙いがあります。現状のプロジェクトでは、主に主観が判断に影響しているため、まずは問題の状況整理に取り組み、ロジックツリーを活用した細分化を進めることが効果的だと感じています。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

「対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right