データ・アナリティクス入門

目的と仮説で切り拓く未来

比較の本質って何? これまでのデータ分析において、私は「分析の本質は比較である」という点を十分に理解していなかったと感じています。適切なデータ選定ができず、チーム内で議論する際にも目的が曖昧であったため、集合データをそのまま使ってしまい、結果として具体的な結論に至らなかったケースが多くありました。 仮説は本当に必要? また、分析はあくまで目的を達成するための手段であるにもかかわらず、そのプロセスにおいて「仮説を立てる」という基本的なステップを十分に意識せずに進めてしまっていたことも大きな問題でした。 分析準備は万全? こうした経験から、まずデータ分析に入る前の準備段階を丁寧に実施することの重要性を痛感しました。具体的には、分析の目的を明確にし、仮説をしっかりと立てること。そして、分析の途中で常に最初の目的に沿って進んでいるかを確認する習慣が必要であると感じています。 依頼目的は明確? 業務の現場では、依頼元が提示する抽象的な目的に基づいて競合や市場の動向、新たな開発分野の抽出などが求められる中、漠然とした依頼内容のままで分析を進めてしまうケースがあります。その結果、得られたデータが本当に必要な情報を反映しているのか疑問が残る場合があり、依頼元側も求める結果が得られていないと感じることが少なくありません。 質向上の秘訣は何? 今回学んだ内容は、まさにこうした状況で活かすことができると考えています。相手が何を知りたいのか、抽象的な目的を具体的に落とし込み、既知の情報などを基に仮説を立てることにより、アウトプットの質を向上させられると実感しました。また、個人としてだけでなく、チーム全体で取り組む際には以下の点を共有し、実践していくことが重要です。 チーム内の確認はどう? まず、分析の目的を明確にし、チーム全体で統一した見解を持つこと。次に、分析前に十分な仮説を立てること、現状を正確に把握すること、分析対象のデータが適正かどうかを確認すること。そして、分析の途中で常に最初の目的に沿っているかどうかをチーム内で確認し合うことが大切だと考えています。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

ビジネスライティングで学ぶ伝えるコツ

目的とデザインはどう? 資料作成においては、まず「何を伝えたいのか」という目的を明確に設定し、それに基づいて必要な情報を過不足なく準備することが大切です。グラフや文字のデザイン、アイコンの選定は、情報伝達を効果的に補助します。そのため、資料作成時にはメッセージとの整合性を意識しましょう。普段は感覚的に選んでいたフォントや色、グラフにもそれぞれ強みや特徴があります。特に、色が与える印象については、学んだ内容をしっかりとインプットしておくことが重要です。 ライティングのコツは? ビジネスライティングの要点についても学びました。「アイキャッチ」の重要性や最後まで読んでもらうための段落構成など、ストーリーの流れを意識することが大切だと感じました。また、読者に「お得感」や「必要性」を伝えられるよう意識して文章を作成することも心掛けたいです。 例えば経営幹部への報告資料を作成する際は、まず手を動かすのではなく、報告する相手が知りたいことや伝えるべきことを明確にすることが重要です。資料の目的を常に意識し、情報を単に伝えるのではなく、そのデータから何が読み取れるのかを考え、一つ以上はそれを資料に盛り込むよう心掛けましょう。情報を全て網羅するのではなく、目的に合った情報の取捨選択も意識する必要があります。 伝える工夫は何? 顧客向けの案内文書やプロモーション用資料、DMにおいては、対象者に「お得」や「価値」が伝わるように、一番に目に留まる場所には「アイキャッチ」を設けることを意識しましょう。また、次の段落を読み進めたくなるようなストーリー性を持たせることも重要です。 現在関わっているイベントの内容を伝える1枚レポートの作成においても、これらの観点を意識したいと思います。伝えたいメッセージが相手に届いているかの検証も同時に考えるつもりです。また、月初めの経営幹部向け報告資料作成では、作りながら考えるのではなく、まず「伝えたいメッセージ」や「相手が求める情報」「必要なデータ」「見やすいレイアウト」について最低限メモに取ってから作業に取り掛かるようにします。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

リーダーシップ・キャリアビジョン入門

自律と挑戦が描く組織未来像

エンパワメントって何? エンパワメントについて学んだことは、組織の目標達成のために、メンバー自身が自律的に行動できる力を育む技術であるという点です。押しつけや単なる指示ではなく、育成の観点からメンバーを支援することで、彼ら自身の成長につながり、結果として組織全体のレベルアップにも寄与すると感じました。また、各メンバーのレベルアップに繋がる業務内容の設定や、効果的なコミュニケーションの重要性についても改めて学び、組織の成長にはメンバー個々の成長が不可欠であると実感しました。 目標はどう意味づけ? 目標設定に関しては、目標達成後にどのようなレベルに到達しているか、また達成によってどのような状態が実現できるかを明示することが重要だと感じました。以前は単に組織の課題に対する数値目標を示すだけでしたが、目標の意義や、本人にとってのメリットを具体的に示すことで、やる気や意欲を引き出す効果があると考えています。 よい目標の作り方は? また、よい目標を設定するためには「意義」「具体性」「定量性」「挑戦」という4つの軸を意識する必要があります。これにより、目標に込められた意義が明確になり、本人のやる気や成長へとつながる目標設定ができるようになると期待しています。 組織強化の方法は? 今後は、目標とその意義を明確にすることで、強い組織づくりを目指していきたいと考えています。現在は所属する部署を中心に取り組んでいますが、将来的には部全体へと視野を広げ、関わりの少ないメンバーも対象としていくことで、全体の課題解決や組織力の向上に貢献できると信じています。マネージャーとしてだけではなく、リーダーとしてチームをけん引する視点を大切にしていきたいと思います。 面談で何を確認? 今年度の目標設定はすでに終了していますが、改めて組織メンバーとの個別面談を通じ、各自の目標について丁寧に説明し直す予定です。特に、「意義」と「挑戦」に重点を置くことで、各メンバー自身の成長を促し、組織全体の向上につながるよう努めていきたいと考えています。

データ・アナリティクス入門

仮説の力で未来を切り拓く

学んだことは何? 「仮説の立て方」「データ収集の注意点」「仮説の種類の違い」を学びました。これまで、集計したデータから都合のよい部分だけを抜き出して仮説を組み立てる、という我流のやり方に限界を感じていました。 仮説立案のコツは? <仮説の立て方のポイント> ・複数の仮説を用意し、最初から一つに絞らない ・仮説同士に網羅性を持たせる データ収集の秘訣は? <データ収集の注意点> ・自らデータを取りに行き、仮説の立証に努める ・仮説に対する反論も排除できる情報の入手を心がける 仮説の違いはどう? <仮説の種類の違い> ・結論の仮説:ある論点に対する仮の答えを示す ・具体的な問題解決を目的とした仮説:分からない点に対する仮の答えを提供する 検証と説得はどう? これらを通じ、検証マインドや説得力、問題意識の向上、迅速な対応、そして行動の精度向上が期待できると実感しました。 海外動向は読める? また、海外顧客の所要動向を分析する際に今回の学びが大いに役立つと感じています。特定の顧客向けであれば、分析対象を絞って時系列で変化を追えばよいのですが、一般向けの製品の場合、市場全体の動向や地域性も踏まえつつ、複数の仮説を立て多くのデータを基に分析する必要があります。そのため、仮説のパターンを複数用意し、ノウハウとして蓄積していくことが非常に重要だと思います。 分析進捗は順調? 現在、顧客所要動向分析効率化のプロジェクトに参画しており、具体的なアクションとして以下の点を実施しようとしています。まず、カスタム品と汎用品それぞれに適した分析指標を設定します。次に、どの指標の変化が顧客所要に大きな影響を与えるのか、複数の仮説を立てながらデータを検証します。そして、仮説と異なる動きが見られた場合、もしくはどの仮説とも一致しない場合には、分析指標自体の見直しを行います。これらのアクションを月次で繰り返すことで、仮説のパターンを着実に蓄積し、分析の精度を高めていきたいと考えています。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

本質を問い、解決へ進む一歩

問題解決はなぜ重要? 問題解決のステップである「What・Where・Why・How」は、根本的な課題解決力を高めるための重要なフレームワークであると改めて実感しました。問題解決を急ぎすぎると、いきなり「How」に飛びついてしまい、問題の本質を見失った対策に陥るリスクがあります。そのため、各ステップにおいて「なぜこの工程が必要なのか」を意識しながら、丁寧に取り組むことが必要だと感じています。 分析の目的は何? また、分析を行う際には、対象データやその性質、進行中のステップに応じ、複数の切り口やフレームワークを柔軟に活用することが大切です。視野を広げ、多角的な考察を実施する姿勢が求められるとともに、目的意識が明確でなければ、どれほど緻密な分析も意味をなさなくなります。分析の際は、「なぜデータ分析をするのか」「どの課題を解決すべきか」をはっきりと定めたうえで取り組むことが肝要です。 どう活かすべき? 今回の学びを活かせる具体例としては、施策の検証やシミュレーション、数字の未達や達成要因の分析、データの可視化やダッシュボードの作成と管理などが挙げられます。これらの業務においても、問題解決の各ステップを意識することで、仮説思考や多角的な視点を補完し、抜けや偏りのない網羅的なアプローチが実現できると考えています。 情報共有はどう? 特に、作成したダッシュボードを部署内で共有し、全員が直感的に課題やポイントを理解できるよう、視認性や意味を重視したデータの加工・構成を工夫することに取り組んでいます。今回学んだ内容は、実践と定期的な復習を通じて、他者に説明できるほど深く理解し、業務の中で確実に活用していきたいと思います。 学びを続けるには? この学習を一度限りのものとせず、継続的な行動として定着させるため、問題解決の各ステップを意識しながら、クリティカルシンキングやヒューマンスキルといった幅広いビジネススキルの向上にも努めていきます。

デザイン思考入門

できなくてもまずは見せる力

プロトタイプの意義は? 今週の学びは、プロトタイプを作り共有する力を実感した点にあります。頭の中で考えているだけでは見えてこなかった課題や視点も、形にして見せることで他者からのフィードバックが得られ、自分ひとりでは気づけなかった点や改善につながる方向性が浮かび上がりました。特に、「完成していなくてもいい」、「とにかく見せて意見をもらう」というスタンスが、新しい価値や学びを生み出すことに大きく寄与していると感じました。デザイン思考の「つくって考える、対話して深める」姿勢は、変化が激しく正解が一概に決まらない現代の仕事において、大きな武器になると実感しています。 提案の伝え方は? 私の仕事では、データ活用やDXを推進する中で、提案内容の伝え方が常に課題となっています。例えば、勉強会の構成やダッシュボードの設計、展示会のコンテンツなどを一人で考え抜くのではなく、早い段階で仮の構成やプロトタイプをチームや対象者に見せ、反応を確認することで、よりニーズに沿った形に近づけることができると感じました。このプロセスは、関係者との共創を促すきっかけともなり、プロトタイピングが単なる手法以上の意味を持つことを教えてくれました。 改善の具体策は? 今後は、以下の3点を意識して実践していきたいと思います。まず①「たたき台」を意図的に作ることです。提案資料やイベント構成は、一人で完成させる前にドラフトを共有し、意見を募る仕組みを取り入れます。次に②フィードバックをもらう文化を育てる点。同僚や他部署とプロトタイプを見せ合い、意見交換をすることで、互いにアイデアを磨き合う習慣を作りたいです。そして③受けた反応をもとに柔軟に変更すること。まず出してから修正するといった循環を業務の進め方に定着させ、迅速な改善を図ります。 これらの取り組みを通じ、完璧なものを最初から求めるのではなく、共により良いものにしていくというマインドセットをチーム全体に広げていきたいと考えています。

クリティカルシンキング入門

情報リテラシーと本質を問う力で未来を拓く

学びを再確認するには? 今週は振り返りの時間でした。 ■講座を通して学んだこと 情報を疑問視し、分析し、論理的に評価することで、信頼性を見極め、正しい判断を行うことが可能になるということを改めて学びました。 考え方を研ぎ澄ますには? ■常に頭においておき、反復練習すること 人は「自分が考えやすい方向に考えてしまう」傾向があります。そのため、思考が偏らないよう、本当にそれでいいのかを自問自答し続ける訓練が必要です。本質に迫るために「なぜ」を繰り返し、問題の根幹に到達することが重要です。 問題解決にはまず「イシューを特定する」ことが必要です。それから「問いを残し」意識し続け、「問いを共有する」ことで組織全体に浸透させます。また、信頼できるデータや根拠を用意し、論理に一貫性を持たせることが求められます。そして、異なる視点や意見を考慮してバランスを保ち、感情に流されず冷静に判断することが重要です。背景や文脈を理解し、公正で倫理的な判断を心がけることも必要です。 プロジェクトに活かすには? ■実際のプロジェクトでの適用 システム導入プロジェクトでは、毎回のワークショップでベンダーの提案について議論します。この際、ベンダーの資料を読み解き、疑問点や言葉の定義の違い、目線が合っているかの確認を行います。前提条件の確認や、トリガーとなった事実の裏にある本質を見極めることは重要です。結論を出すに当たっては、軽率な判断を避けるべきです。 自身が運営するプロジェクトでも、本質的な目的を見据えた方向性を決定し、その目的に基づいた運営内容を構想します。対象となる役員や経営層、一般社員などに応じて適したスライドの作成や見せ方、言葉の選び方に工夫を凝らします。メッセージを明確にし、ピラミッドストラクチャーで根拠を整理することで、スライドの内容が大きく変わります。慣れるまでには時間がかかりますが、毎回対象ごとにピラミッドストラクチャーを作成することが重要です。

データ・アナリティクス入門

掘り下げる力が課題解決を変える

問題解決の流れは? 問題解決のプロセスを整理するために、まずは「問題解決の4ステップ」について学びました。基本の流れは、what(問題の明確化)、where(問題箇所の特定)、why(原因の分析)、how(解決策の立案)という順番です。中でもwhereの部分では、どこに原因があるのかを深く掘り下げ、分析対象の範囲を絞ることで、原因を検証しやすくする点が強調されています。 仮説の立て方は? さらに、原因に対する仮説を立てる際には、複数の仮説を出すことや、異なる切り口(ヒト・モノ・カネなど)から考えることが重要です。これにより、一面的な見方に偏らず、網羅的な分析が可能になります。そして、仮説の検証に向けて、どのようなデータを収集するかを意図的に選定し、意味のある対象から適切な方法で情報を得ることが求められます。 データ収集はどう? また、都合の良いデータだけでなく、比較のための情報収集も欠かさず行うことが必要です。反論を排除するために、仮説に反する情報も踏まえた検討が重要で、これにより説得力のある分析が可能になります。ここでは、フレームワークとして3C(市場、競合、自社)や4P(製品、価格、流通、プロモーション)を活用する方法が示されています。 全体評価は? 総評として、問題解決の4ステップがしっかりと整理され、特にwhereの部分を掘り下げる姿勢が評価されています。今後は学んだ理論を実際のビジネスシーンに応用し、複数の仮説の中から優先順位を明確にする方法を検討することが期待されています。 進捗報告はどう? また、メンバーの進捗報告に際しては、各自がこのプロセスに沿っているか確認することが重要です。仮説が複数たてられているか、異なる視点での切り口が取り入れられているか、さらにはデータ収集が適切に行われているかを、リーダーを中心としたレビューの場でしっかりと意見交換を行い、全体の分析精度を高めるよう努めてください。

戦略思考入門

捨てる思考でサービス改善!顧客満足度を再定義

捨てる意味は何? 一番印象に残ったのは、捨てることで顧客のメリットが向上する可能性があるという点でした。なぜなら、これまでは捨てるという行為を、新しい価値を創造するために人や時間を作ることや、コストダウンを目的としたものと捉えていたため、顧客のメリットが上がるという発想はあまりありませんでした。この点から、自分たちの核となるサービスを充実させるために、あくまでお客様のためではなく自分たちのために行っていることがないのかという視点で戦略を再考し、これに活用したいと考えています。また、選択・捨てるときには、定量的な判断基準が必要であり、それによってより客観的な判断ができると感じました。そして、結果を振り返り、さらに必要なアクションをとるためにも、この基準が重要であることを強く認識しました。 対応中止の判断は? 私たちは営業社員向けのコールセンターを運営し、「問合せ対応」と「手続きの受付対応」をサービスの柱としています。これまでは営業社員の満足度を意識して両方を提供していましたが、本当に顧客が望んでいるものを定義し、ROIを考慮した上で「手続きの受付対応」の中止を検討しています。判断基準として、手続き一件当たりの生産性や、顧客の想定通りに手続きが正しく行われるリスク、電話受付以外の代替手段の有無を検討項目としています。 問合せ対応の優先は? さらに、問合せについても待たせることが多いため、つながりやすさを重視して優先順位を設定します。判断基準としては、コンタクトリーズンごとの問合せ量の割合と、営業活動における優先順位の有無を考慮していきます。まずは、優先順位を考える上で基準となる項目を洗い出します。具体的には、サービスの対象者が期待していること、手続き一件当たりのコスト、一回の電話で解決する割合、問合せの応答時間、後処理の時間などです。これらの基準項目を「効果」と「頻度」のマトリクスとして分析し、捨てるべきことを明確にしていきます。

「対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right