クリティカルシンキング入門

データ分析の新視点で営業資料をブラッシュアップ

異なる視点でデータを分析するには? データを分解して考える際、When, Who, Whatの切り口を意識し、複数の視点で分析することがデータ分析に繋がることを学びました。様々な切り口から傾向を掴み、本当にその見方で合っているかという疑問を持ちながら丁寧に読み解くことが大切です。今後は、業務でデータ分析を行う際に発見した1つの傾向に満足せず、疑問を持ち、様々な切り口を意識して業務を見直していきます。 効率的な分析手法をどう見つける? また、データの切り口は最初から細かくせず、大→小の順で考えると分析しやすいことも分かりました。 どのように営業会議資料を改善する? 最近の営業会議資料の作成業務では、ありきたりな角度でしか集計・分析できていなかったことに気づいたので、今後は様々な角度から分析を行い、グラフを作成するつもりです。SNSのフォロワー数分析でも、大きな範囲でしか数字を分けていなかったため、細かく区切って分析し直そうと思います。 効果的なグラフ作成のポイントは? 会議資料の作成においては、データ抽出の対象範囲を見直し、どのような角度で分析が必要かを持論として上司に相談しながら進めます。グラフは見せたい内容によって変わるので、相手にとって分かりやすい分析の内容を心掛けます。 SNS分析を向上させる方法とは? SNSの分析に関しても、1つの大きな傾向に縛られず、切り口を変えて再度分析し直すことを念頭に置いています。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

クリティカルシンキング入門

思考を鍛える新たな自分への挑戦

批判的思考の重要性は? ライブ授業を通じて、私の思考には偏りがあることを再認識しました。クリティカルシンキングは「批判的思考」と訳されることを受講前から知っていましたが、その批判の対象が自分自身であること、そして自分の思考をチェックする「もう一人の自分」を育てることが重要であることが強く心に残りました。ついつい自分に都合の良い考え方をしてしまいがちですが、常に客観的で批判的に自分に問い続ける姿勢を持ち続けたいと思います。 批判的思考はどう活かす? このような批判的思考法は、様々な場面で役に立つと感じます。私自身、管理職として日々様々な課題を解決し、意思決定を行う必要があります。その際、相手が何を求めているのか、目の前の課題の本質がどこにあるのかを、過去の経験に捉われることなく、常に目的を意識しながら客観的に思考することが重要であると感じました。このプロセスを繰り返すことで、適切な結論を導き出せるようになると思います。 意思決定をどう改善する? 意思決定の場面では、以下の点を意識して行動したいと考えています。まず、目の前の問題を構造化し、ロジックツリーを使ってアウトプットしてみること。そして、「だから何? なぜそうなるの?」と自分に問いかけ、批判的に見直すことで客観視します。また、自分の意思決定プロセスをアウトプットし、結論だけでなく、その結論に至るまでの考えを意識的に説明し、言語化することで理解を深めていきたいと考えています。

アカウンティング入門

企業分析で広がるIT投資の世界

財務諸表の理解が深まる瞬間とは? 総合演習を通じて、実際の企業のP/L(損益計算書)やB/S(貸借対照表)を確認することで、事業構造と諸表の関係性を実感することができました。私は個人的に株式の運用を少し行っており、これまで気になる会社の決算説明資料を読む機会がありました。しかし、それらの多くはP/Lに関する内容が中心であり、B/Sをじっくり見ることはほとんどありませんでした。このことに気づいたのも今回の発見でした。また、特定企業のB/Sを初めて詳しく確認した結果、興味がさらに深まりました。 IT投資比率の適正とは? 私の業務は情報システム・セキュリティ管理です。ここでは、IT投資コストがP/L上で一般に販売費・一般管理費として扱われるため、これに関連する投資コストが売上高に対してどの程度の割合を占めるかを把握し、売上高IT投資比率としてモニタリングしています。これにより、競合や業界平均と比較しつつ、適正なIT投資を導けるよう工夫していきたいと考えています。 クラウド活用企業の比較方法は? 自社のIT投資コストについても、売上高IT投資比率を指標として経年でのモニタリングを行い、競合や業界平均などと比較することで、適正なIT投資判断に努めています。また、自社の情報システムはほとんどがクラウドで構成されているため、固定資産が少ないという特徴があります。この特徴を考慮した上で、適切な比較対象を選定していく必要があると感じています。

デザイン思考入門

まとめで開く新たな視点

なぜ録画を選んだ? 当日は参加が難しかったため、録画を試聴しました。課題定義に対する柔軟なアプローチや、思いがけない着眼点に驚かされ、参考になるヒントが多く含まれていました。また、資料にまとめることで共感や一貫性が伝わりやすくなる点を実感し、どんな内容でも「見てもらいやすくするためにまとめる」という視点を仕事に取り入れたいと考えました。 発散不足はどうして? 今回のシェアを通じて、私自身の「発散」が不足している点に気づかされました。これは、自分の課題として今後改善の対象に取り組んでいこうと思います。 学びの活用は? さらに、自社のウェブサイトのリニューアルに際して、今回学んだ学びを取り入れたいと考えています。具体的には、まず一人の顧客像を再設定し、その人物の悩みやニーズをあえて徹底的に広げてみること、プロトタイプやデザインの段階で綿密にテストを行い、フィードバックを積極的に取り入れること、そして作って終わりではなく、細部にまでこだわりながら継続的にブラッシュアップする姿勢を実践していきます。 相談で広がる工夫は? 自分一人の視点には限界があると感じたため、まずは信頼できる相談相手にアポイントを取り、フィードバックを受けるためのスケジュールを先に設定し、アイデア出しを数多く行うことを意識します。さらに、フレームワークを使って情報を整理し、相手に伝わりやすく工夫することを、まずは実践を重ねる数ヶ月間の目標としています。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

データ・アナリティクス入門

みんなで目指す納得評価術

評価基準はどう決める? 複数の案を選ぶ際、定量的な評価を行う方法はチーム内の納得感を高めるために有効です。ただし、評価の重みづけが主観的にならないよう注意したいと感じました。 テスト実施の秘訣は? A/Bテストでは、変更する部分を限定・絞ることが重要です。どの部分が効果的だったかを明確に判断できるよう、実施時期や対象ユーザのセグメントを統一し、他の要因が分析に影響しないようにする点にも気をつける必要があります。 現状把握はできてる? まずは現状をしっかりと確認し、当たり前の事実であっても言語化してチーム全体で共通認識を持つことが大切です。その上で、事象の原因を特定し、解決策の検討に移るステップが効果的だと感じます。 アンケート設計はどう? また、仮説をもとにユーザアンケートをデザインする際は、因数分解やクロス集計ができるよう意識することがポイントです。フレームワークを活用して実際に分析し、わかりやすく言語化していくプロセスも有益です。 レポート共有はどう? アンケートのデザインにおいては、考え方や方針をチーム全体で共有し、どのような分析が可能か、またはどの分析を行いたいかを仮のレポートとして作成してみると良いと感じました。 理想と現状の対比は? 最後に、あるべき姿と現状を整理し、適切なフレームワークを見つけて習得することで、資料として他者に教えやすい形にまとめられる点にも大きな意義を見出しました。

戦略思考入門

学びの視点を広げる環境分析の力

目標達成の秘訣は? 目標を効率的に達成するためには何をすべきなのか、この問いへの答えを導くにはどのような流れで考えていくべきかを、今回の講義で学んだように思います。まず、今起きている事象の本質を見極めることが必要であり、そのためにはKSFを特定することが求められます。 視野拡大のコツは? 広い視点や高い視座で情報を収集し整理することで、全体像を把握することが重要です。これにより、大局を捉え、視野を広げて考えることが可能になります。ただし、自分の観点だけに頼ると見落としや偏りが生じてしまいます。そのため、フレームワークが非常に有用なツールとして役立ちます。フレームワークは単に埋めるだけではなく、各要素の整合性が取れていることが大切です。 環境変化の見極めは? 今回学んだ環境分析は、自分の業務において製品や技術の進化の方向性を見出したり、組織施策の考案に活用できると考えています。特に、自分が見えていない外部環境の変化が業界や製品に大きな影響を与える可能性についての話が印象に残りました。このような状況は、自業務でも起こり得ると考えており、外部環境分析に取り組むことの重要性を感じています。 実践で理解深める? 自業務における製品や技術、組織を対象に、フレームワークを活用して環境分析を進めていきたいと考えています。フレームワークの使用方法を理解するだけではなく、実践を通じて理解を深めることが必要だと感じています。

マーケティング入門

わかりやすさで広がる可能性

普及要件は何が重要? イノベーションの普及要件として、比較優位性、適合性、わかりやすさ、試用可能性、可視性が挙げられます。中でも特に重要だと感じたのは「わかりやすさ」です。顧客や使用者が具体的なイメージを持ちやすければ、試してみようという動機につながるためです。 顧客視点はどう大切? また、顧客ニーズに沿った商品を開発・販売していると、競合企業が似た製品を市場に投入してくることがあります。こうした状況で競合他社の分析に偏りすぎると、顧客本来のニーズを見落としてしまう恐れがあります。そのため、常に顧客視点を重視することが求められます。 市場導入はどう検討? 新製品を日本市場に導入する際は、イノベーションの普及要件を基に、顧客がどのようなイメージを持つかを十分に検討する必要があります。また、競合製品についても、売れているかどうかを判断するだけでなく、顧客がどのような印象を抱いているかを分析し、その結果を自社製品の改善に役立てることが大切です。 改善策は何がある? まずは、売れていない商品を対象に、なぜ売れていないのかを普及要件に照らして考え、どう改善すれば魅力的になるかをディスカッションすることが有効です。さらに、自社製品については、顧客面談や営業担当との同行などを通じて、私たちが伝えたいメッセージが正しく伝わっているかを確認し、より良いサービス提供につなげる努力が必要だと感じています。

リーダーシップ・キャリアビジョン入門

ふたつの関心軸で変わるコミュニケーション

マネジリアルグリッドとは? マネジリアルグリッドという概念について初めて知りました。「人間への関心」と「業績への関心」の2つの軸に分けて考えると、確かに理解しやすいと思います。コミュニケーションがうまくいかないと感じるときには、この関心の軸が異なっているのかもしれないと感じました。業務中はどうしても「業績への関心」に比重が大きく傾きがちかもしれませんが、私自身は「人間への関心」に寄っていると思います。両軸とも大切にしたいと感じています。 MBOにおける環境要因とは? 次に、環境要因と適合要因の視点から、直近の目標設定(MBO)でメンバーへの支援の準備を進めたいと思います。対象者の経験や知識スキルの把握、そして組織やチームの方向性や状況を整理して、その上で主に支援型のアプローチを考えていますが、達成志向型のアクションも忘れずに取り入れていきたいです。 タレントマネジメントの活用法は? 具体的なアクションとしては、まずはタレントマネジメントを活用して対象者の情報を把握します。スキルについてはある程度把握できると思われます。また、リーダー陣の会議を通して、組織の課題や方向性を理解することが重要です。組織再編があったばかりなので、この点が特に重要です。そして、定期的な1on1の機会(現在は月1回)を利用して、対象者のバックグラウンドを知り、キャリアプランを描きつつ、明確なゴール設定を目指したいと考えています。

データ・アナリティクス入門

仮説で拓く学びの冒険

仮説の定義は? 仮説とは、ある論点に対する仮の答え、または分からない事柄に対する暫定的な解答です。これには「結論の仮説」と「問題解決の仮説」の2種類があり、各仮説は過去、現在、未来という時間軸によって内容が変化します。 複数視点の意義は? 仮説を立てる際は、決め打ちせずに複数の視点から検討することが重要です。異なる切り口で仮説を構築し、各仮説に網羅性を持たせるよう意識しましょう。 問題解決の手順は? 問題解決のためには、「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の分析)」「How(解決策の立案)」という4つのステップに沿って進めると効果的です。 仮説活用のメリットは? 仮説を正しく活用することで、各自の検証マインドが向上し、説得力が増すと同時に、ビジネスのスピードや行動の精度の向上が期待できます。これまでの経験則や直感に頼るのではなく、ゼロベースで思考し、決め打ちせずに複数の仮説を検討することが求められます。 多角的分析は効果的? まずは、3Cや4P分析を用いて多角的に仮説を立てることから始め、ヒト・モノ・カネといった様々な切り口で網羅性を意識することが大切です。実践の際には、一つの仮説に固執してデータ収集に走るのではなく、複数の視点から検証を重ねることで、比較対象との条件を同等に保ちながら分析を進め、精度の高い答えに導くことが期待されます。

「対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right