戦略思考入門

捨てる思考でサービス改善!顧客満足度を再定義

捨てる意味は何? 一番印象に残ったのは、捨てることで顧客のメリットが向上する可能性があるという点でした。なぜなら、これまでは捨てるという行為を、新しい価値を創造するために人や時間を作ることや、コストダウンを目的としたものと捉えていたため、顧客のメリットが上がるという発想はあまりありませんでした。この点から、自分たちの核となるサービスを充実させるために、あくまでお客様のためではなく自分たちのために行っていることがないのかという視点で戦略を再考し、これに活用したいと考えています。また、選択・捨てるときには、定量的な判断基準が必要であり、それによってより客観的な判断ができると感じました。そして、結果を振り返り、さらに必要なアクションをとるためにも、この基準が重要であることを強く認識しました。 対応中止の判断は? 私たちは営業社員向けのコールセンターを運営し、「問合せ対応」と「手続きの受付対応」をサービスの柱としています。これまでは営業社員の満足度を意識して両方を提供していましたが、本当に顧客が望んでいるものを定義し、ROIを考慮した上で「手続きの受付対応」の中止を検討しています。判断基準として、手続き一件当たりの生産性や、顧客の想定通りに手続きが正しく行われるリスク、電話受付以外の代替手段の有無を検討項目としています。 問合せ対応の優先は? さらに、問合せについても待たせることが多いため、つながりやすさを重視して優先順位を設定します。判断基準としては、コンタクトリーズンごとの問合せ量の割合と、営業活動における優先順位の有無を考慮していきます。まずは、優先順位を考える上で基準となる項目を洗い出します。具体的には、サービスの対象者が期待していること、手続き一件当たりのコスト、一回の電話で解決する割合、問合せの応答時間、後処理の時間などです。これらの基準項目を「効果」と「頻度」のマトリクスとして分析し、捨てるべきことを明確にしていきます。

データ・アナリティクス入門

検証の軌跡が未来を変える

原因って何が影響する? 問題の原因を追究するためには、対象となる現象が起こるまでのプロセスを細かく分解し、各段階の要素を把握する手法が有効であることを学びました。また、複数の可能性を網羅的に洗い出し、根拠に基づいて最適な解決策を絞り込む方法も身に付けることができました。 検証はどのように進む? 仮説検証の手法としてのA/Bテストにおいては、検証対象の効果を正確に判断するために、できる限り条件を揃えた同一環境下で比較することの重要性を再認識しました。これにより、得られる結果がより信頼性のあるものになると実感しました。 なぜ離脱が発生する? さらに、ユーザーの利用過程をプロセスに分解し、どの段階で離脱が発生しているのかを探るファネル分析についても、具体的な事例を通じて理解を深めることができました。一方で、実際にA/Bテストの結果をもとに今後の方針を決定する際、テスト実施自体に対する関係者からの合意や納得を得る難しさを改めて感じる機会もありました。 分析のポイントは? そこで、What、Where、Why、Howの各ステップに沿って分析を進める重要性を認識しました。特に、WhyとHowの部分にスムーズに入れるよう、まずはWhatとWhereについて関係者全員で共通認識を持つことが不可欠です。また、総合演習では「満足度が下がっている」という結果だけに飛びつかず、どこに問題があり、なぜそのような状況に至ったのかを分解し、分析・判断することの大切さを学びました。 具体策はどうすべき? 具体的には、以下の点が重要です。まず、What、Where、Why、Howの各段階に沿って、問題を丁寧に分解すること。次に、不正解の仮説は存在しないという前提に立ち、考えられる仮説を2~3案以上、網羅的に検討する癖をつけること。そして、A/Bテストやファネル分析を通じて仮説の正否を検証し、施策の精度向上につなげることが大切だと感じました。

データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

リーダーシップ・キャリアビジョン入門

伝え方ひとつで未来が変わる

伝達はどう改善すべき? 自分が「任せたつもり」でも、実際には伝わっておらず、期待した成果に結び付かなかった経験があります。その原因は自分自身にあり、任せ方やフォローアップの方法に問題があったと痛感しました。 動機づけはどう感じる? 大切なポイントとして、まず動機付けが挙げられます。やる気や意義、納得感を醸成するために、問いかけの工夫が必要だと感じています。また、6W1Hという具体的な視点を取り入れることで、会話をより明確に進めることができると実感しました。さらに、ゴールや期待値を定量的に設定し、認識を合わせることも重要な要素です。 課題はどこにある? 経営層から降りてきた課題や、日々の業務で発生する問題に対して、対象のメンバーへエンパワメントを行う考え方も再度学びました。これまでエンパワメントに努めてきたつもりでしたが、具体的な進め方や定量的なゴール設定が十分ではなかったと気づかされました。特に一年を通じたゴール設定は意義深く、具体的かつ定量的に行っているものの、日々の業務においては「忙しさ」を理由に十分な議論ができていなかった点が反省点です。 対話で何を引き出す? 今後は、1on1の時間を有効に活用し、相手に問いかけながらコミュニケーションを図りたいと考えています。具体的には、「どうしたらより良くなるか」「解決すべき課題は何か」「業務上の問題点はないか」といった質問を通じて、メンバーの意見やアイデアを引き出すことに注力します。同じく、6W1Hや定量的なゴールを意識しながら、進め方や完了の目安についてお互いにすり合わせを行う予定です。 称賛でどう盛り上がる? また、週一回のチームミーティングの中で、各メンバーの取り組みを称賛し合う時間を意図的に設けることも大切だと感じました。行動を皆で称えることで、目標達成時の満足感が向上し、次のチャレンジへの自信を深めてもらえると考えています。

戦略思考入門

視野を広げ、判断軸を築く方法

視野の広さはどう? 日々の業務において、自分が視野狭窄になっていないかどうかが印象的なテーマとして心に残りました。私はこれまで、社内外の大きな声や短期的な効果を重視しすぎた結果、大局的に物事を見る余裕を失い、自分の判断軸を持てない場面が何度もあったと感じています。 本質はどう掴む? 物事の本質を見極め、目標を効果的に達成する方法をシステマチックに考えることが重要だと学びました。そのためには、直観に頼るのではなく、フレームワークを活用してシステマチックに考えることが求められます。正しい知識をもとにフレームワークを正しく使用することで、戦略的思考を習慣化することができると感じました。 意識するコツは? また、MTGやプレゼン・資料作成において学んだことをアウトプットする機会がたくさんあります。実際の業務で以下のポイントを意識しています。 - 経営者の視点で物事を考えること。大局的に中長期的な効果を見据えた判断や言動を心掛ける。 - ジレンマを過度に恐れない。整合性の取れたものが必ずしも最適解であるとは限らず、粘り強くアイデアを考える。 - 人の意見をしっかり聞く。関係者と話し合い、広い視野を持つことが大切である。 分析と整合性は? プレゼンや資料作成の際に、以下のポイントを意識しています。 - 中長期的視点でゴールを明確にする。 - 現状分析として、3C分析やSWOT分析を活用する。 - 設定したゴールと現状分析の結果に整合性が取れているかを確認する。 - 顧客の設定(対象と非対称の選別)を行い、「やるべきこと」を絞り込む。 - 他者と意見交換を行い、集合知を活用し、その後の業務を円滑に進める関係性を築く。 判断軸はどう? これらの手順を踏むことで、自分の判断軸をぶれさせない自信に繋がると考えています。また、得た知識に流され、本質を見失わないように常に注意しています。

デザイン思考入門

共感が紡ぐ本質の発見

誰のために取り組む? 社内でデータ活用推進を担当する中、どのような人に、どのような目的でコンテンツを活用してもらいたいかを考える必要性を改めて実感しました。今回、デザイン思考における課題定義を学ぶ中で、まず「誰のための取り組みか」を明確にする重要性を再認識しました。各部署で業務状況や意識が異なることを踏まえ、ヒアリング内容に加え、「もしこの人が○○だったら」という仮説的な視点を取り入れてペルソナを作成することで、対象者の背景や課題、感情に寄り添った検討が可能になりました。その結果、リアルな声だけに捉われず、幅広い視点から課題を捉える仕組みづくりの基盤ができたと感じています。 解決策に頼りすぎ? 今回の振り返りを通じて、解決策ありきで考えないことの大切さを強く感じました。業務の中で、つい「このダッシュボードを作れば良い」「この機能を入れれば便利になる」といった解決策から考えがちですが、本当に解決すべき課題は、ユーザー自身も言語化できていない無意識の困りごとである可能性が高いと気づきました。そのため、なぜその現象が起きるのか、背景にはどんな要因があるのかと問い続ける姿勢が、持続的な価値提供につながると実感しています。 本質的な課題の見極め? また、課題定義においては、共感フェーズで得た具体的なエピソードや感情を丁寧に読み解くことが非常に重要だと学びました。単に「この人はこう言っていた」という事実を受け止めるだけでなく、「なぜ自分がそこに共感したのか」「その言葉の裏にある背景や価値観は何か」と考えることで、深い理解につながります。さらに、課題を抽象化して定義する際には、まず具体的な現象を十分に観察・収集し、そこから意味を引き出すことが大切だと感じました。抽象化は便利な反面、現実との乖離に陥るリスクがあるため、具体から出発し共感を手がかりに本質的な課題を見極める力を今後も養っていきたいと思います。

データ・アナリティクス入門

仮説とデータで描く地方創生のヒント

仮説の見方は? ビジネスにおける仮説思考について、まず複数の仮説を同時に考え、それぞれに網羅性を持たせることが重要だと学びました。仮説を検証するためには、適切なデータを取得して比較する必要があり、その際には何を比較指標とするのかを意図的に選ぶことが求められます。たとえば、残業時間の増加要因として故障対応の増加が疑われる場合、単に故障件数だけでなく、1件あたりの対応時間も合わせて評価することが必要です。 情報収集の意図は? また、データ収集では意味のある対象から意見を聴取し、反論を排除するために必要な情報まで踏み込むことが重要です。さらに、実際のビジネス現場では、3Cや4Pといった分析の枠組みを活用して具体的な仮説を立てることで、解像度が高まり、個々の仕事に対する検証マインドや説得力が向上するほか、ビジネスのスピードや行動の制度が改善されることが分かりました。 過疎地域の課題は? 一方、過疎地域への移住促進においては、雇用の創出が鍵となります。人口が5000人以下の市町村では、産業の集積が不十分なため、相応の所得を得られる雇用を生み出すには、行政が主導して仕事づくりを進める必要があります。こうした雇用創出の一策として、総務省が制度化した仕組みがありますが、現状では本県で十分な成果が上がっていません。 事業展開のヒントは? この原因を明らかにするために、どのような業務に何人派遣しているか、また仕事の切り出し方についてデータを収集し、市町村担当者と情報を共有することが今後の事業展開のヒントになると感じました。現在、管内の1市町村で既に事業が展開されており、協力体制の可能性を検討しています。また、他の市町村でも類似の事業設立が検討されているため、たとえば損益分岐点を意識した事業計画の作成方法をケーススタディとして示し、過疎地域の課題解決につなげる取り組みを進めたいと考えています。

マーケティング入門

実践で磨くマーケティング力

レベルアップの理由は? オンライン学習の中で、講師の誘導を受けながら対象ターゲットや商品の機能的・情緒的価値について考察する機会があり、確実にレベルアップできたと実感しています。しかし、実際の業務に応用する場合、担当学部の広報戦略を再整理するためには、リサーチに必要な分析力、高校生という顧客層から本音を引き出すインタビュー力、企画書をまとめ上司を説得するプレゼンテーション能力、さらには周囲を巻き込んで企画を遂行する力など、各場面で求められる知識やスキルが不足していると感じています。より解像度高く顧客を理解し、良い提案を行うために、マーケティング的思考力を磨くとともに、周辺領域の学びを深めたいと考えています。 広報戦略で悩むのは? 広報戦略の見直しにあたっては、まず高校生が大学に求めるもの、各学部の学びに対する印象、学部選択や大学選択の決め手、重視するポイントなどのインサイトを把握し、市場全体を見渡した上でSTP分析を丁寧に進める必要があります。私は、4PのうちPromotionを担当しているため、イベントでは参加者が思わず情報を共有したくなる仕掛けを考え、自らの学びを活かしてメディアに広がりやすいコンテンツを発掘し、自然な波及効果によって志願者の増加につなげていきたいと考えています。 他者の視点は必要? また、企画書を作成する際に自分一人で思考を深めることは可能ですが、より質の高い提案を実現するためには他者の視点が不可欠です。まずは部内のキーマンと積極的にコミュニケーションを図り、各学部ごとに必要な分析を進められる体制を整えたいと思います。学んだ内容は単なる知識にとどまらず、実践を重ねることで使えるスキルへと昇華させることが肝心です。今後は、日常生活の中で気になる商品やサービスを題材に、学んだフレームワークを応用しながら自分自身の勉強を積み重ねていきたいと考えています。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

マーケティング入門

市場分析で地域イベントを再考する

顧客層候補をどう絞り込む? 「誰に売るか」というテーマのもと、私は次の二つの方法を学びました。 まず①、広大な市場から感度を持って「顧客層候補」を絞り込む方法です。これはSTP分析のST(セグメンテーション・ターゲティング)のプロセスに該当します。市場を感度良く分類し、特に市場規模、成長性、ライバルの状況の6R観点から絞り込むことが重要です。 競合とどう差別化する? 次に②、その顧客層候補を狙うライバルたちと差別化する方法についてです。これはSTP分析のP(ポジショニング)に該当し、競合との差別化を図るために自社の特徴を洗い出し、顧客ニーズに合う訴求ポイントを二つ選びます。これによって、自社とライバルの特徴をマッピングし、優位性を明確にします。 家業での具体策は? これらは論理的に整理された手順とフレームワークなので、一つ一つのステップに沿って、分析を進めていきたいと考えています。 具体的には、家業である寺や観光業の側面からこれをイメージしています。今年実施予定のイベントに関して、居住地域、年齢層、趣味嗜好などさまざまな切り口で市場をセグメント化し、6Rを用いて絞り込みます。そのうえで、差別化可能な優位性を選び出し、イベントのテーマをより明確にすることを目指したいです。 地域全体をどう活用する? ただ、観光客を呼び込むという観点で、寺にのみ焦点を絞るとパイが狭くなるため、地域全体を対象として検討するのが良いと考えています。飲食店や雑貨屋、他の寺院も仲間として取り組むような発想が大切だと感じています。 企画の基本動作とは? 具体的なアクションプランとしては、まず自分で時間をとって考え、次に周囲の人々、特に妻や地域の人々に意見を聞くというプロセスを繰り返します。この作業を通じて、企画を行う際の基本動作として定着させることを目指しています。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

「対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right