データ・アナリティクス入門

あなたも解決者に!ナノ単科で学ぶヒント

問題解決フレームは? アンドリューが経営する音楽スクールのB校を題材に、問題解決のフレームワークについて考えることができました。問題解決は「What(何が問題か)」「Where(問題はどこで起きているか)」「Why(なぜ起きているのか)」「How(どう解決するか)」の4段階で進めるのがポイントとなります。 赤字経営の理由は? まず、Whatですが、B校の本質的な問題は、計画上は年間黒字を見込んでいたにもかかわらず赤字経営に陥っている点です。計画では年間黒字2,250千円が予想されていたのに対し、実際には5,150千円の赤字となり、経営の持続性が問われる状況です。 どこで問題発生? 次にWhereです。ロジックツリーを用いて問題を層別分解することで、原因が「生徒数の減少」と「費用の増加」という大きな観点に分けられることが見えてきます。生徒数減少については、ターゲット設定の不適切、広告・販促の効果不足、立地やアクセスの不利などが考えられ、具体的には地域特性を無視した集客戦略や講座の魅力訴求が不足していることが挙げられます。一方、費用増加に関しては、イベント開催費の計画超過、講師人件費の増加、稼働クラス数の減少による単価上昇などが要因として考えられます。 数字で見る実態は? さらに、変数分解では売上と費用を数値的に捉え、売上は「生徒数×単価」、費用は「固定費+変動費」と整理できます。計画との差異から、生徒数は計画の100人に対し実績は60人と大幅に下回り、イベント開催費や講師人件費の増加が費用超過の主因であると考えられます。 MECEって何? また、MECE(Mutually Exclusive, Collectively Exhaustive)の考え方にも注目しました。これは、物事を漏れなく重複なく切り分けることで、特に生徒属性の分析において「年齢」「職業」「経験」「通学距離」「入校動機」などの切り口が有効であると学びました。 知見を活かすには? この知見を踏まえ、Week1で自身の仕事であるマナー講師養成講座の販売促進に応用するため、以下のように整理しました。 なぜ受講者が伸びない? まず、Whatとして、受講者数の伸び悩みとターゲットへの認知不足が課題です。次に、Whereとして、ロジックツリーによる層別分解で、受講者数が伸びない原因を「ターゲティングの不明確さ」「広報・販促手法の効果不足」「商品自体の伝わり方の問題」に分類しました。具体的には、対象層が曖昧であったり、各チャネルの効果が検証できていないこと、さらにはカリキュラムや修了後の活用イメージが十分に伝わっていないことが挙げられます。 なぜ提案が足りない? Whyについては、顧客の属性や行動データが十分に収集・分析されず、地域別・職種別のニーズに応じた提案ができていないことが原因です。また、広告費や営業活動が感覚的に運用されている点も問題と捉えました。 どう解決策を見出す? 最後にHowとして、以下の解決策を提示します。まず、受講者データの属性分析を行い、年齢、職種、地域、受講動機などで顧客像の「見える化」を図ります。次に、ターゲットごとに訴求ポイントを整理し、例えば教職員向けには「学校教育に役立つ資格」、主婦層向けには「家庭と両立できる副業としての活用」、企業人事向けには「社員研修の内製化への貢献」を訴求します。 効果検証は進んでる? さらに、LPやチラシを用いた簡易なテストマーケティングを実施し、広告手法の効果検証を行います。併せて、導入校や協力企業とのネットワークを活かしたリファラル紹介制度や、メルマガ・LINEによる情報発信、オンラインの無料相談や体験講座など、申込につながる接点づくりも強化します。最後に、販促効果や費用対効果を定量的に記録し、次期キャンペーンやイベントの改善につなげる仕組みの構築を目指します。 計画は成功に繋がる? このアクションプランを実行することで、問題を構造的に捉え、具体的な改善策を計画的に推進できると考えています。

データ・アナリティクス入門

実践で磨く論理・情熱の知恵

目的と仮説は何? データ分析の本質は、目的を達成するための仮説検証の手段であり、その核心は「比較」にあります。目的や仮説を明確に意識し、サンプルの選定や条件の統一に努めることが重要です。仮説とは、生成と修正のループを経る動的なプロセスの構成要素であると考えられます。 バイアスとは何? 比較の観点では、「Apple To Apple」という考え方が、局所管理の重要性を示しています。爆撃機の弾痕のエピソードは「生存者バイアス」の教訓を教えてくれますが、選択バイアス、観察バイアス、確認バイアス、報告バイアス、時間軸バイアス、因果関係の誤認、欠測バイアスなど、さまざまなバイアスの存在に留意する必要があります。実験であれば局所管理、ランダム化、反復といった対策が有効ですが、既存データの分析では多角的な視点から批判的に観察する姿勢が求められます。 論情倫理の均衡は? 私自身は、統計学やケモメトリクスを専門としていたため、論理・データに偏重したアプローチを取ってきました。しかし、近年の経験から、情理や倫理とのバランスが必要であると痛感しています。論理・情理・倫理の三要素のバランスが、良い意思決定を行うためには欠かせません。本講座を通じ、特に現在検討中の人事制度改訂において、データ分析のアプローチを取り入れることで、より客観的な意思決定を実現したいと考えています。もちろん、データはあくまで一要素であり、他の要素とのバランスを崩さないようにしたいと思います。 分析方法はどう違う? 分析の際には、目的遂行のための仮説生成・修正のループを意識し、その駆動力として論理(データ)、情理(共感性)、倫理の三要素を念頭に置くことが大切です。また、論理(データ)の解釈に際しては、「比較である」という原則を守ると共に、生存者バイアスをはじめとした各種バイアスを極小化する意識が求められます。実験的な方策では局所管理、ランダム化、反復の原則が一定の効果を発揮しますが、既存のデータを対象とする場合はさらに多角的な検証が必要となります。 TAPEは何? その実践的なアプローチとして、「TAPE」フレームワークの導入が考えられます。これは、次の観点からデータを捉えるものです。まず、Target population(対象母集団)として、データが本当に分析対象の母集団を代表しているか確認します。次に、Assembly of data(データの集め方)では、どのような条件や手順でデータが収集されたのかを問います。さらに、Predictor/outcome(予測変数と結果変数)が明確に定義され、測定に問題がないかを検証します。そして、Extraneous variables(交絡因子)については、関連しそうな他の要因が適切に制御・補正されているかを考えます。 問いは何? より具体的には、以下の問いを活用します。 ① このデータは誰の、どのような状況を反映しているのか? ② このデータはどのような手法で得られたのか? ③ 仮説として考える因果関係や相関は、他の要因に左右されていないか? 結論はどうなる? 以上のような多角的な視点を持つことで、より精度の高いデータ分析が実現でき、バランスの取れた意思決定に繋がると考えています。

デザイン思考入門

観察と共感でひらく新発見

調査ログの見直しは? 今週、育児期間中の30~40代を対象に実施した過去のインタビュー調査ログを見直す作業を行いました。コーディングを意識しながら作業する中で、改めて一次データの重要性を実感しました。 抽出視点の違いは? ログから課題やニーズにつながる事象や行動を抽出する作業は、人の目に依存するため、抽出の視点が人によって異なりやすいと感じました。動画内でも経験が強調されていましたが、バイアスが働くと必要な情報に気付かなくなる可能性があるため、情報を絞りすぎると大切な観点を見落としてしまいそうだと危惧しました。 共感の重要性は? デザイン思考の最初のステップである「共感」では、ユーザーの見えない課題やニーズを発見するために、観察、体験、インタビューを繰り返すことが重要です。インタビューでは、観察で気になった行動の背景を心理面から深掘りし、共感を得られるように課題やニーズを言語化します。こうして得た情報をテキスト化し、コーディング分析を行うことで、単なる観察だけでは浮かび上がらない本質的な課題や行動を明らかにすることができます。 行動の理由を探る? 実際、観察や体験で注目した行動をインタビューで詳しく聞くことで、ユーザーが無意識に行っている当たり前の行動の理由を解明するプロセスの重要性を実感しました。課題を抽出する際は、互いの思い込みや認識の差が生じやすいため、情報共有を通じて共通認識を合わせることが求められます。しかし、立場や利害関係が異なる中で何を重視すべきかを調整するのは容易ではなく、うまく進む場合とそうでない場合があると感じました。 定性調査の有用性は? WEEK-3で学んだ定性調査は、新しい領域や馴染みのない状況で仮説を構築する際に有効な手法だと感じています。定量データだけでは掴めないユーザーの姿勢や心理を探るのに、インタビュー、フィールドリサーチ、ログ(日記)などの手法が効果的です。実際、観察を通じてユーザーが意識していない行動や癖から気付かないニーズや課題にアプローチできることもあります。 仮説構築の進め方は? 定性調査では、まずインタビューやフィールド調査で得た情報を整理し、要点となる事象や課題を抽出します。その後、抽出した要素をカテゴリー分けして情報を圧縮し、最小限の要素にまとめた上で、フレームワークやプロセスの形に図式化・構造化することで仮説モデルを作成します。 ヒアリングの工夫ポイントは? また、インタビューの際にヒアリング項目を整理したシートを事前に作成し、記入してもらってから話を聞く方法も有効だと感じました。ただし、記入式では重要な点が十分に言語化されない場合があるため、まずは日常の業務や業務フローなど現状を把握することから始める工夫が必要です。ヒアリングが雑談になり、課題に焦点が定まらなくなる場合は、ジョブ理論を参考にするのも一案です。実際、グループワークでフォームの改善に取り組んだ参加者の話では、ユーザーが入力の手間を感じないようにするため、従来の枠にとらわれない解決策が模索され、その柔軟な発想が印象的でした。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

データ・アナリティクス入門

論理的思考力を徹底的に学ぶ: 実践例多数!

問題解決のフレームワーク 講座全体を通じて、特に学びとなったポイントは次の通りです。 まず、問題解決のフレームワーク「What」「Where」「Why」「How」の順番で考えることが重要であることです。これにより、問題解決のプロセスが論理的かつ体系的になります。 データ分析の視点は? 次に、数値データを分析する際に漠然と数字を見るのではなく、定量分析の5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を持つことが大切です。これにより、効率性や再現性が向上し、同じ気付きや示唆をより効果的に得ることができます。 また、平均値を取る際には「標準偏差(データのばらつき度合)」という視点を持つことが必要です。仮に平均値が同じであっても、「ばらつきがある」「ばらつきがない」ではデータの意味合いが変わってくるからです。 Howで成果をどう上げる? 問題解決のフレームワークの最後「How」で解決策を考える際には、選択肢を絞り込むための判断基準を明確にすることが肝要です。これにより、成果を上げる可能性が高まり、仮に成果が上がらなかった場合でも、どの判断基準に問題があったのかを振り返ることで、さらなる改善が可能となります。 グラフ選びの新たな視点 関連動画で学んだポイントもいくつかあります。グラフを作成する手順「仮説や伝えたいメッセージは何か?」「比較対象は何か?」「どのグラフを使うのか?」は新しい学びでした。これまでの私は最初から「どうグラフを作ろうか」と考えていましたが、1と2を先に考えることで、自然とどのグラフを使うべきかが見えてくることに気付いたのです。 さらに、マイナスの項目がある場合にはウォーターフォールが有効であることや、何を比較対象とするかによって適切なグラフが異なることも学びました。例えば、ギャップがある場合は横棒グラフやウォーターフォール、時系列やトレンドがある場合は折れ線グラフや縦棒グラフ、散らばりや構成比率を示したい場合はヒストグラムや円グラフ、相関を示したい場合は散布図がそれぞれ適しています。 学びの実践で何が変わる? これらの学びをいくつかの面で活用したいと考えています。まず、自社サービスの課題の明確化や改善に向けて、営業プロセスの課題を整理し、日々の定例ミーティングでチームメンバーと議論を深める場で、得た知識を実践したいと思います。自分だけでなく、チーム全体に学びを共有することで、議論や分析の質を高め、より有効なアクションに繋げたいです。 また、経営分析(財務諸表の比較分析)においても今回の学びを応用するつもりです。四半期ごとに財務諸表を比較分析し、問題を具体的に特定することで、株主への業況説明の説得力を高めたいと考えています。そのためには関連書籍で知識の増強に努めたり、必要に応じて今回のような講座に参加することも検討しています。

データ・アナリティクス入門

振り返りで気づいた仮説の力

仮説とは何か? 仮説とは、ある論点に対する仮の答え、もしくは分からない事に対する仮の答えを指します。仮説には主に「結論の仮説」と「問題解決の仮説」があります。結論の仮説はある論点に対する仮の答えであり、問題解決の仮説は問題解決のプロセスに沿ったものです。この場合、What(何が問題か)、Where(どこで問題が発生しているか)、Why(なぜ問題が起きているのか)、How(どう解決するのか)の観点で考えます。 仮説を持つことの価値とは? 仮説で考えることの意義は以下の通りです。 1. **検証マインドの向上と高まる説得力**: 仮説を持つことは検証作業とセットで動くことを意味します。 2. **関心・問題意識の向上**: 関心や問題意識のないところには仮説は生まれません。日頃から自分の仕事に関連して仮説をもつように心がけることが重要です。 3. **スピードアップ**: まず自分なりにあらゆる情報を総動員してこれがいいのではないかと仮説を持ち、テスト的に実施しながら検証する手順を踏むことで、スピーディに対応できます。 4. **行動の精度向上**: 仮説検証のサイクルを早く回すことで、それに伴う行動の精度が向上します。 データ収集の重要性 原因の仮説を立てる際には、仮説を検証するためのデータを集めます。データには既存のデータと新しいデータがあります。既存のデータとしては、自社内にあるデータ、一般公開されているデータ、パートナー企業が取得しているデータなどがあります。新しいデータとしてはアンケート(広くデータを収集)、インタビュー(狭い範囲で深く収集)があり、追加で調査が必要な箇所に絞り、新たなデータを取ることが重要です。 仮説を立てる際の注意点は? 複数の仮説を立てる際には、以下の点に注意します。 - **仮説同士に網羅性をもたせる**: 何を比較の指標とするか意図的に選択し、何を見ればよいのか、何と比較したらいいのか意図をもって考えます。 - **データ収集する際の注意点**: 誰に聞くか(意味のある対象から聞けているか)、どのように聞くか(比較するためのデータ収集を忘れない。反論を排除する情報にまで踏み込めているか)に注意します。 フレームワーク活用のすすめ 仮説を考える際には、3C(市場・顧客、競合、自社)や4P(商品、価格、場所、プロモーション)のフレームワークを活用します。また、仮説検証のスピードを上げ、仮説検証のサイクルを早く回すことも重要です。 仮説の立て方が分からない方には、仮説を考える意義や、日頃から自分の仕事に関連して仮説を持つように心がけることが有効です。

データ・アナリティクス入門

実践で磨くA/Bテスト活用術

フレームワークの使い方は? 今週の講義は、具体的なフレームワークや分析手法を紹介するものではなかったものの、複数の視点を取り入れて考察する過程が印象的でした。仮説の立案や必要なデータの検討にあたってフレームワークを用いた結果、回答がしやすく感じられ、今後も折に触れて活用していきたいと思います。 データ活用はどう? また、ある指導者の思考方法に沿って考えることで、データ活用の体系的な流れが見えてきました。A/Bテストについては、アンケート作成のしやすさやデータ収集の容易さから非常に便利なツールだと感じました。先週のホテル宿泊客向けの設問、たとえば「食事か部屋か」という内容は、A/Bテストに最適な例だと思います。以前に似た分析を行った経験もあり、体系的に学んだことで活用の幅が広がったと実感しました。調査対象以外の条件を統一するという基本的な考え方も、以前学んだ内容を思い出させるもので、理解しやすかったです。さらに、同じ環境や条件下でランダム化を行うことで、精度の高いデータが得られる点にはしっかりと納得できました。 PDCAで進める秘訣は? A/Bテストは実施が簡単で、所定の時間内に複数回行えるため、PDCAサイクルを迅速に回しながら正解に近づける点が魅力的です。日常生活や業務での応用については現段階では明確ではありませんが、来月から本格的に業務が始まれば、積極的に活用していきたいと考えています。日常への適用はやや難しいと感じるものの、A/Bテストに類する試みが可能であれば、試してみたいと思います。また、今週はストーリー形式で原因追及を行う講義であったため、新しい手法としてのA/Bテストを講義内容に当てはめるのは少し難しく感じましたが、今後も機会があればどんどん利用していきたいです。 小さな失敗の学びは? 次回の業務では、ぜひA/Bテストを活用してみたいと思います。ある書籍で、成功の本質は致命的でない小さな失敗を積み重ね、そこから成功のカギを見出すことだと学んだこともあり、PDCAサイクルをより迅速に回すために、この手法を取り入れていくつもりです。今週の講義内容については、統計の視点からも改めて振り返り、深く学んでみたいと考えています。先週と今週のマーケティングに関連する講義や、過去に読んだ書籍を踏まえると、再び深く学んでみたい部分もありますが、やるべきことが増えているため、優先順位をつけながら学習していくつもりです。 AIに見抜かれた理由は? なお、Q1の回答で少し手を抜いたところ、すぐにAIに気付かれてしまい、驚きました。来週は引越しのためバタバタしそうですが、グループワークの課題がなかったのはありがたかったです。

マーケティング入門

潜在ニーズを探る秘訣と実践方法

GAiLで何を学んだ? GAiLと動画学習を通じて、多くの学びがありました。過去に実践していたこともありましたが、うまく活用できず、深く掘り下げることができていなかったため、事実をつかみ切れていないことに気づきました。 顧客ニーズはどう捉える? 顧客のニーズを深堀し、真のニーズを捉えることは重要ですが難しいと感じています。顧客自身が欲求に気づいていないため、単純な質問では引き出せないのです。しかし、真のニーズを探り出す手法について学ぶことで、その意図をよく理解できました。 行動観察の効果は? まず、エスノグラフィー(行動観察調査)は、消費者の潜在ニーズや課題を発見するために有効であり、言葉以外の情報が主な分析対象であることが分かりました。そして、デプスインタビューでは、報酬の影響で真のニーズが引き出しにくくなる点を知り、これを避けるためにラポール形成が有効だと理解しました。 ウォンツ追求に落とし穴は? 真のニーズをつかめないままウォンツを追求すると、価格競争に巻き込まれたり、的外れな商品開発に繋がる恐れがあります。アンケートや顧客購買データの分析、インタビューだけでは真のニーズを捉えきれないと、改めて認識しました。 経験から何を学ぶ? 特に、サービスを提供する立場として、顧客のウォンツに過度にフォーカスしていたことに気づきました。過去の業務改革プロジェクトでも、潜在ニーズの抽出が不十分だったことを反省しています。今後は、深堀りできる質問を通して真のニーズに到達することを目指します。 手法をどう実践する? さらに、実務の流れを理解し、エスノグラフィーをより効果的に活用したいと思います。ウォンツの裏にある潜在ニーズや課題を発見するため、これまで学んだ手法をどんどん活用することで、より良いサービスの提供や提案を可能にするつもりです。 新たな挑戦は何? まずは手法に慣れることから始め、さまざまな場面で活用できるように努めます。具体的には、以下の点に取り組んでいきます: 1. 身近な商品やサービスについて、真のニーズを想像し実践に活用する。 2. 社内提案時に顧客(上司)の真のニーズを捉えるため、エスノグラフィーを導入し実践する。 3. 状況に応じて質問リストを準備し、相手の返答を具体的にイメージして備える。 4. 顧客先ではラポール形成をして顧客ニーズを探り、具体的な質問で深堀する。 成功と失敗の振り返りは? これらの取り組みを通じて、成功と失敗の経験を纏め、成功した点は今後も継続し、問題点は振り返り次回に向けて改善します。

データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

「対象 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right