クリティカルシンキング入門

クリティカルシンキングで世界が変わる!

クリティカルシンキングの活用場面は? クリティカルシンキングは、課題解決や上司への提案、説得など多くの場面で活用できる思考法であることを理解しました。特に課題解決の場面では、自分の経験や勘に頼らず、関係する様々な人の立場から課題を見ることで、その本質を探り、より良い解決策を提案できると感じました。ライブ授業の「病院」をテーマにした課題では、病院に関わる人々の視点を変えることで、病院の役割について多様な考え方ができることに気づきました。また、他の受講生から自分にはない視点を学ぶことで、クリティカルシンキングの重要性を再認識しました。 システム要件定義への応用法は? 現在、私は生命保険契約の電子手続き化に関するシステム要件定義作成に関わっており、部下が提案するシステム機能が本当に必要かどうか、管理職として判断を迫られることがあります。今回学んだことを活かし、視点や視座を広げ、顧客・営業・開発者・経営者の目線で機能のメリットとデメリットを考慮することが、より良い判断に繋がると実感しています。 どのように優先順位を考える? 具体的には、部下から提案されたシステム機能の開発要否について、多角的にメリット・デメリットを洗い出し、優先順位を決めていきたいと思います。例えば、顧客目線では便利でも、実際の利用者が少なく費用がかさむ場合は、費用対効果を考慮して開発を見送るといった判断を意識して行っていきます。最終的に、部下や上司に対してなぜその判断をしたのかを説明する際、説得力のある説明ができると考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

戦略思考入門

選択と集中で顧客感動を高める方法

どうして捨てるの? 「捨てることが顧客の満足度アップにつながる」というフレーズが特に印象に残りました。普段、顧客のために多くの選択肢を用意するのが良いと考えがちですが、実際には選択肢を減らすことが求められる場面も多々あります。すべてに対応するのではなく、あえて選択肢を絞り、それを徹底的に磨き上げることで、最終的に顧客にとって魅力的な企業になれると学びました。 判断をどう明確に? 「捨てる判断の明確化」は、結果的に正しい答えを導くだけでなく、周囲を納得させるためにも必要です。これまで「なんとなく良さそう」という感覚で判断していたことに気づかされました。今後は、定性的ではなく定量的に説明できるように意識していきたいと思います。 紙を捨てる理由は? 現在進めているペーパーレス化は、まさに「紙を捨てる」ことであり、この考え方を直接活用できると感じています。その際、なぜ捨てるべきなのか、捨てた後の未来に何が待っているのか、顧客の利便性がどう向上するのかを意識し、経営陣の合意や周囲の説得を進めていきたいです。 成果をどう示す? これらを踏まえて、以下の点を意識しながら施策を検討・実行していくつもりです。 1. 方向性を明確にし、何を実現したいのかを具体化する。 2. 紙を捨てることで得られる成果は何かを考え、それがブレークスルーになる案であるかを検討する(対顧客、営業、本社)。 3. 定量的なデータで示すことを心掛ける。

アカウンティング入門

損益計算書で知る企業の本音

どの数字に注目する? 損益計算書を読み解く基本的な考え方は、まず大きな数字―売上、営業利益、経常利益、当期純利益―に注目することから始まります。これらの数字を押さえることで、企業の概況が把握でき、さらに各項目を比較や対比することで傾向や相違点を見出すことが可能です。こうした考察により、企業が大切にしている価値を損益計算書から読み取ることができます。 各項目の意味は? 具体的には、売上は事業規模を示し、値引き販売が影響すると売上総利益が減少する場合もあります。売上原価が高いと、原材料費の上昇や高原価率商品の売上比率が高い可能性が考えられます。営業利益は企業の本業における利益を示す一方で、必ずしも経営全体の状況を反映しているわけではありません。経常利益は本業外の収益や費用を含み、企業の借入状況などを把握する手がかりとなります。そして、当期純利益は臨時的な活動――たとえば災害や不動産売却など――の影響も受けるため、最終的な利益として重要な指標となります。 知識をどう活かす? この知識は、関連会社との折衝や制度改定の検討時に経営状況を確認するために活用できます。また、適正な労働分配率などを計算し、グループ内や業界内の比較を行うことで各社に具体的な数値を提示する際にも役立ちます。各社の損益計算書をもとに計算するという実践的なアプローチが、具体的な理解と説得力のある説明につながります。

戦略思考入門

スケールアップの罠と集中の力

なぜ規模が影響? 規模の経済性について、多く生産して多く販売すればコスト単価が安くなるという一般的なイメージがあるかと思いますが、実際には規模が大きすぎるとコスト単価が逆に高くなってしまうケースがある点は興味深いです。これは理論だけでなく現実のビジネスにも影響を与える重要な視点だと感じました。 集中効果はどう? また、習熟効果についても、一つの作業や業務を繰り返すことで生産性が向上するという概念は理解していましたが、実際にそれを曲線で示すことで、マルチタスクよりも一つの作業に集中した方が良いという説得力が生まれるのだと思いました。複数の研修や施策を同時進行することが多いのですが、むしろ特定期間に絞って進めた方が、受講者も進行者も効率が良いのではと考えるようになりました。これをきっかけに、マルチタスク的な研修の進め方を見直していきたいと思います。 研修の集中戦略は? 具体的には、ある期間はひとつの研修施策に集中し、複数の研修が並行して進む中での抜け漏れや対応漏れを防ぎたいと考えています。例えば、営業担当向けの研修では、デビュー後すぐに複数の施策を提案するよりも、期間を設定して一つの案件に専念し、提案スキルを高められるようなフローを整えたいと思っています。これにより、中途半端に終わらず、しっかりとした提案力を身につけることができる環境を整えたいと考えています。

データ・アナリティクス入門

プロセスが紡ぐ学びの軌跡

原因探索はどう? 問題の原因を探る際、プロセスに分けて考えることの重要性を実感しました。Week1で学んだ「分析は要素を分けて比較する」という手法を再確認し、今後も意識して取り組んでいきたいと思います。また、対概念について学ぶ中で「問題に関係する要素」と「それ以外」を区別するシンプルな考え方が非常に使いやすいと感じました。これまでに習ったフレームワークとも併せ、具体的な分析に活かしていきたいです。 判断基準はどう? さらに、「正解」が存在しない中で最適な案を選ぶには、適切な判断基準に基づいて評価するプロセスが不可欠であることが印象に残りました。精度を高める努力は必要ですが、時間をかけすぎないバランス感覚を持ちながら課題に取り組むことが大切だと考えています。 営業戦略考える? また、売上や利益を拡大していくために、What、Where、Why、Howを丁寧に検討し、効果的な営業施策を立案・実行する必要性を感じました。関係者に説得力のある行動計画を提示することで、より良い成果を得られるよう努めていきます。 多角的視点は? 一つのアイデアに固執せず、多角的な視点で物事を見ることも心がけたいです。正解のない状況でも、適切な判断基準を設定して効率的に進めることで、無駄な時間を省きながら最適な解決策にたどり着けると実感しました。

デザイン思考入門

変化を呼ぶ営業提案の軌跡

提案で何が変わる? 普段は法人向けに体験完了のためのソリューション販売を行っていますが、提案時のストーリーテリングにも活用できると感じました。ソフトウェアの機能紹介に留まらず、「どのように変化するのか」を伝えるため、定性分析の視点を取り入れると、提示内容に説得力が加わると思います。 従業員の声はどう捉える? 例えば、従業員体験の向上を目指す企業に対して、単に「エンゲージメント調査ができます」と伝えるのではなく、既存の課題(社員の声が拾えていない)と、その背景にある要因(匿名性が低く、率直な意見が出にくい)を明確にし、ソフトウェア導入によってフリーコメントの定性分析で見えなかった部分が可視化されるという変化のストーリーを描いた提案が効果的だと考えています。 日常でどう活かす? また、デザイン思考と定性分析を活かすことで、単なるソフトウェア販売や機能訴求にとどまらず、顧客の業務課題の本質を理解し、より価値のある提案や支援が可能になると感じました。普段の業務にこれらの視点を取り入れることで、「顧客の課題を深掘りするヒアリング」「提案時のストーリーテリング」「プロダクト活用のサポート」といった場面で実践しやすくなり、来週の営業活動でも意識的に活用してみようと思います。

データ・アナリティクス入門

実務で輝く!数値戦略の新発見

代表値の選び方は? データの特性に合わせた代表値の取り方を誤ると、算出された数値が意味を持たなくなることを再認識しました。成長率などの数値結果に触れる機会はあったものの、その計算に幾何平均が用いられていることは、私にとって新たな学びとなりました。 標準偏差の使い方は? また、これまでグラフなどのビジュアルに頼ってデータの散らばりを把握していたため、標準偏差を用いて数値として表現するという手法に触れることができたのは非常に興味深かったです。 幾何平均で何が変わる? 加重平均や中央値は、データの検証において従来から活用していたものの、売上の伸長率を算出する際に幾何平均を用いる方法は、早速実務に応用していけると感じました。さらに、標準偏差を算出することで、データのばらつきを具体的な数字としてイメージし、説明に説得力を持たせる工夫を進めたいと考えています。 実務でどう活かす? 具体的には、部門の各営業メンバーの業績比較や、セグメント別の業績比較において個々の成長率を算出し、その結果を問題点の洗い出し資料として活用したいです。また、商品別の売上推移に成長率を適用することで、優劣を明確化し、問題への対策検討に役立てたいと考えています。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

データ・アナリティクス入門

数字を紡ぐ、現場からのヒント

どう分析すれば良い? 「やみくもに分析しない」という言葉を目にし、データ分析の奥深さを再認識しました。現在、チームで検討中の施策に対し、まずは営業担当へのインタビューを実施し、そこで多くの意見が寄せられた内容については、全体を対象にアンケートを行う計画です。 数字の根拠は何故? 数字の根拠をもとにストーリーを作り上げる手法は、相手に響く説得力を持たせる上で非常に重要であると改めて感じました。この考えを念頭に置きながら、実務におけるデータ分析のアプローチをさらに熟考する機会となりました。Week6で総復習を予定していた中で、新たな気づきを得ることができたのは大きな収穫でした。 実務データの秘訣? また、AIコーチングからは、実務における定性データ(インタビューやアンケート)と定量データとの整合性や、数字の根拠から効果的なストーリーを作るための仮説検証のプロセスについての問いをいただきました。まずは、アンケートを通じて定量データを効率よく収集できる仕組み作りに取り組むとともに、過去から蓄積している定量データの中から、今回の営業担当へのアンケートに活用できるものがないかを洗い出してみようと思います。

クリティカルシンキング入門

伝わる文章はこう作る!基本の秘訣

文章の伝わりは? 日本語の適切な使い方が、文章の伝わりやすさに直結することに気づきました。主語と述語のつながりが保たれているか、途中で主語が変わっていないかというチェックポイントが明確になり、改めて基本を学び直す必要性を感じました。 論理順序は? 手順に沿って文章を書くことはできていたつもりでしたが、主要な論点とそれを支える根拠のつながりが不十分であると実感しました。論理的な順序で文章を構成することが、読者に確実に伝わる文章作りに重要であると感じています。 相手理解は? 新しい組織やメンバーとスタートしたチームで、意図したように伝わらずもどかしい思いをした経験から、共通の前提がない場合でも相手の立場や関心事項をしっかり考え、丁寧な文章で伝えることの必要性を痛感しました。今後は、文章の評価観点を復習して自分自身の中に確実に落とし込んでいきたいと思います。 説得力の構築は? また、「手順を踏んで書く」方法は、営業資料の作成などにも有効だと感じています。柱となる論点を立て、その論点を支える具体的な根拠や具体例をしっかりと繋げる習慣を身につけ、より説得力のある文章を構成するよう努めたいです。
AIコーチング導線バナー

「営業 × 説得」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right