データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

クリティカルシンキング入門

学びを仕事に活かすクリティカルシンキング感想

クリティカルシンキングとは? クリティカルシンキングの講座で何を学んだのか。クリティカルシンキングの「クリティカル」とは批判を意味し、自分に対して批判的な視点を持つことです。直観的、主観的、経験値に基づいて発想し判断することはスピーディーで簡単ですが、客観的、論理的に考えることで、相手に伝わりやすく説得力のある答えを導き出すことができます。この講座で学んだ頭の使い方を身につけるには、反復が必要であり、習得までには時間がかかります。グループワークなどのアウトプットもとても良い場でした。 問題解決の新たな視点 ある具体的な事例を見て、課題解決のために段階的に問題を解決していく経営的な視点に気づきを得ました。現状に対する問いを立てることが重要であり、良い結果を出すためには良い問いを立てることが必須です。また、イシューを共有化し、それを意識し続けることも大切です。 効果的なコミュニケーション方法は? 営業部門から製造部門への申し伝えの際には、販売実績の根拠を示したうえで生産の見込みを立ててもらうようにお願いしました。また、製品プレゼン資料の作成時には、項目を分類し何を伝えたいのか分かりやすい資料を作成しました。さらに、グラフを用いて視覚的に分かりやすい資料づくりを心掛けました。チームミーティングでは、イシューを共有化し論点をずらさず、ゴールを共有しました。 学びの習慣をどう続ける? この6週間の学びの習慣を継続するため、通勤時間の他にも時間を作り、学習する時間を設けるようにしています。現状の自分に必要な課題を見つめ直し、考えるべきことを考えます。私は直観的、主観的に考え、発言してしまうことが多いので、クリティカルシンキングの講座で学んだピラミッドストラクチャーやロジカルツリーといった手法を踏まえて、考えたうえでアウトプットする習慣をつけています。また、ディスカッションを通して他者の意見を聞き、自分の考えに広がりを持たせていきます。

クリティカルシンキング入門

具体例で説く!論理のピラミッド

具体例は何が必要? 今回の課題では、「英会話スクールに通うべきか迷っている友人に、自分が通ったスクールを推薦する」というテーマが提示されました。その際、単に「講師が良い」「生徒が良い」といった抽象的な評価を並べるだけでは、説得力に欠けることに気づかされました。相手が求めるのは、もっと具体的な判断材料であるため、理由を階層構造で整理し、具体例を示す必要があると学びました。 ピラミッドはなぜ重要? この課題を通して、私は「ピラミッドストラクチャー」という思考法の重要性を実感しました。結論を最初に提示し、その後に具体的な理由や根拠を階層的に整理するこの方法は、相手にとって非常に分かりやすく、説得力のある説明が可能となります。具体例として、中心の問い「英会話スクールに通うべきか?」を軸に、「講師の質」や「生徒の質」といった中項目を設け、それぞれに「経験が豊富」「教え方が上手い」「意欲が高い」「多様性がある」といった具体的な基準を積み上げることで、論理の骨格が明確になることを実感しました。 実務への活用法は? さらに、ピラミッドストラクチャーは資料作成やプレゼンテーションにおいても非常に有用です。家庭用酒類の営業を担当する私の日常業務では、取引先への提案や社内報告が多く、結論とその根拠を明確に示すことが求められます。この手法を用いれば、「結論→理由→具体例」という構成を徹底することで、要点を迅速かつ分かりやすく伝えることができ、商談や会議、提案書の作成において大きな効果を発揮します。 得たスキルはどれ? 今回の学びからは、「論理的に理由を整理する力」「相手の視点で考える力」「具体例を挙げて説得力を高める技術」の3つの重要なスキルを体得できたと感じています。今後は、このピラミッドストラクチャーの考え方を業務や日常のコミュニケーションに積極的に取り入れ、より効果的な提案や報告を行い、信頼の構築につなげていきたいと考えています。

クリティカルシンキング入門

小さな振り返りが大きな学びに

小さな仕掛けはなぜ? クリシンを効果的に実践するためには、日々の小さな「仕掛け」が大切だと実感しました。例えば、毎日10〜20分の学習時間を確保し、学習後には必ず一行でも振り返りを書くことで、自分の気づきや成長を記録することを意識しています。 どんな学習方法が有効? また、以下のような学習方法を取り入れることが有益だと感じています。まず、ニュース記事を一つ選び、主張・根拠・前提を分けてメモし、100字以内で要点をまとめる方法です。さらに、身近な課題に対してロジックツリーを作成し、「なぜ?」を三回掘り下げることで、根本原因を明らかにし、解決策を複数考える手法や、自分の意見に対して反対意見を三つ挙げ、どの意見が最も説得力があるか比較する練習も取り入れています。 思考力はどう養う? これらの取り組みにより、表面的な情報や過去の経験だけに頼らず、現状の課題を深く掘り下げ、物事の本質を見極める思考力が養われると感じます。 顧客へのアプローチは? 所属する営業部門では、まずお客様の真のニーズを発掘するため、表面上の反応だけでなく、その背景にある要因を徹底的に探ることを実践したいです。お客様が現時点で製品購入を必要と感じていない場合でも、その理由を深く掘り下げ、自発的な購買行動を促す具体的な戦略に落とし込むことが求められます。 論理的提案はどう実現? さらに、常に「なぜ?」と問い続けることで、見落とされがちな問題点を浮き彫りにし、課題の深掘りと仮説検証を徹底する姿勢を持ちたいと思います。これにより、社内ミーティングや商談の場面で、客観的かつ論理的な提案ができると考えています。 判断力はどう高める? 最後に、情報を客観的に分析し、思い込みや経験に頼った偏りを排除することで、判断力のクオリティを向上させることを目指します。これらの学びや取り組みを通じ、日々の業務の質の向上につなげていきたいと思います。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

クリティカルシンキング入門

伝わる文章、ヒント満載!

文章作成の何を意識? 文章を書く際に、「主語」「述語」「文の長さ」などの要素に注目することで、読み手にわかりやすい文章が作れることを学びました。また、誰に向けて書くのか、読み手がどのような背景を持つのかを意識し、適切な理由付けを行うことで説得力を高められると感じています。 説得力はどう磨く? また、直接の対話や文章で情報を伝える際には、複数の根拠を整理し、どの理由が説明に最適なのかを検討することが大切だと実感しました。そのための手法として、ピラミッドストラクチャーを活用し、まずは書き出す習慣を身につけることが効果的だと思います。 業務伝達はどうする? 実際の業務では、誰に対して伝えるかによって活用方法を工夫する必要があると感じています。たとえば、Team内や1on1のシーンでは、伝えたい内容を根拠に基づいて整理し、順序立てて説明することを心掛けています。その際、対面での口頭説明が適しているのか、メールやメッセージでテキスト化した方が説得力が増すのか、ケースバイケースで使い分け、または併用するように努めています。 課題管理のポイントは? Teamメンバー個々の成長課題が異なるため、具体的な課題を書き出し、ピラミッドストラクチャーを活用して適切なマネジメント方法を見出すことも重視しています。同様に、具体的な営業戦略を立案する際も、達成すべき問いを実現可能な行動レベルまで落とし込むため、何度も書き出して分析し、上司や同僚とのディスカッションを通じて新たな根拠や結論のアイディアを取り入れるプロセスが重要だと感じています。 キーメッセージは何? 最後に、ピラミッドストラクチャーを作成する際に、根拠としてどのキーメッセージを選ぶかで悩むことが多いです。皆さんがどのように工夫しているのか、ぜひ意見を聞いてみたいと思います。

クリティカルシンキング入門

論理の力で未来を切り拓く

クリティカル思考は変革? クリティカルシンキングは、ビジネスだけでなくさまざまな場面で知識を実践に生かすための大切な思考力です。物事を適切なレベルまで掘り下げることで、新たな発想が生まれ、機会やリスクに気づくことができます。また、より円滑なコミュニケーションや意思決定、説得・交渉の場面、さらには部下のコーチングにも役立っています。アウトプットを重ねることで自らの考えに対する客観性が養われ、ディスカッションを通してさらに気づきを得ることができると実感しています。 市場分析の秘訣は? 私はメーカーで市場分析を担当しており、商品提案や営業支援に向けたデータ分析と資料作成に携わっています。業務の中では、MECEやロジックツリーといったフレームワークを活用し、商品の「訴求」や「剤型」、「成分」など複数の軸から競合の分析や自社商品の比較を行っています。これまで頭の中で漠然とロジックツリーを組み立てていたものの、今後はそれを視覚化することで、より分かりやすいアウトプットを目指していきたいと考えています。 資料作成の工夫は? また、資料作成においては、社内向けと社外向けで求められる情報の深さや説明の濃淡を意識して作成しています。内部向けの場合は、すでに把握されている事項とそうでない事項を見極め、相手に合わせた内容に調整しています。一方で、社外向け資料では、営業担当者や提案を受ける側の情報把握レベルをヒアリングし、目的の明確化や問いを重ねることで、より正確なコミュニケーションを実現するための工夫を続けています。 学びの成果は? ナノ単科で学んだクリティカルシンキングの考え方は、私の業務全体においても大いに役立っており、今後も自らの気づきやアウトプットを通して、思考力の向上に努めていきたいと感じています。

アカウンティング入門

アキコのカフェから学ぶ利益術

利益の工夫って何? 今回の学びで印象に残ったのは、利益が単に売上の増加だけでなく、コスト管理やお客様行動を意識した仕組みづくりによって生み出されることです。アキコのカフェの事例からは、立地や時間帯に合わせた営業、セルフサービスによる人件費の削減、地域に根ざした集客など、身近な工夫が利益に直結する点がよく理解できました。数字の裏側にあるビジネスの工夫や戦略を知ることが、アカウンティングを理解する第一歩となったと感じています。 効率化で利益は上がる? 私は現在、営業アシスタントとして業務改善に取り組んでおり、請求処理や発注管理など、日々の業務効率化が求められています。今回の学びを、業務プロセスの見直しやコスト管理の観点で活用したいと考えています。たとえば、手間がかかる作業にかかる時間や人件費を「販管費」として捉え、どこを改善すれば利益率が向上するかを検討することで、業務全体をより効率的にすることができると思います。 作業コストはどう? また、日々の業務の中で「この作業に要するコストはどれほどか」「この作業を簡素化すれば、より価値ある業務に時間を振り分けられるのではないか」と問いを立てながら取り組んでいます。改善案をチームに共有する際には、アカウンティングの視点を取り入れ、具体的な数字を示しながら説明することで、より説得力のある提案ができるよう努めています。 改善提案の数字は? まずは毎日の業務を棚卸しし、各作業にかかる時間と人的コストを概算します。その上で、どの工程が高コストであるかを明確にし、効率化やシステム化が可能な部分を洗い出す予定です。改善提案を行う際には、「この変更により具体的な人件費削減が期待できる」という形で数字を交えた説明ができるよう、準備を進めています。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

データ・アナリティクス入門

仮説が照らす学びと挑戦

仮説の意味は何? 仮説とは、ある論点に対する仮の答えを意味します。仮説を立てる意義としては、検証マインドを高め説得力を増すこと、関心や問題意識をより明確にすること、物事の進行スピードを早めること、そして行動の精度を向上させることが挙げられます。 複数仮説の意義は? また、仮説を考える際には、複数の仮説を同時に立てて決め打ちしないこと、そしてその仮説同士が異なる切り口で網羅的に考えられていることが重要です。さらに、フレームワークを活用することで、自分の思考の幅を広げ、複数の視点から仮説を検証する機会が得られます。この点では、各仮説の正しさそのものよりも、いくつかの異なる切り口を持つことが非常に大切です。 検証方法はどう? 仮説の検証方法としては、既存のデータを活用して確認する方法や、新たにデータを収集して比較検証する方法があります。比較のためのデータ収集においては、都合の良い情報だけに偏らないよう注意する必要があります。 営業での仮説は? また、仮説は営業の現場においても有用に活用できます。例えば、売上の進捗をマネジメントする上で、現状の売上に対して問題はどこにあるのか、原因は何か、そしてどのように解決すべきかといった点を明確にするために、問題解決の仮説は大いに役立ちます。こうした仮説をもとに施策を考え、実行し、その結果をデータをもとに定期的に分析することで、施策の軌道修正を行い、着実な成果を導くことが可能になります。 フレームワーク活用は? 最後に、従来は活用機会が少なかったフレームワーク、たとえば3C分析や4P分析を実際にどのように業務に取り入れているのか、その事例についても知見を得たいと考えています。

データ・アナリティクス入門

データ分析で見えてくる新しい視点

データ分析の基本概念とは? 今回の講座を通じて、データ分析のアプローチ方法や考え方を学ぶことができました。特に以下の点について多くの学びがありました。 まず、「分析とは比較である」という基本的な概念を理解しました。また、データ分析においては仮説思考が重要で、最初に仮説を立ててからデータを使ってその確からしさを確認するプロセスが大切であることを学びました。特に印象的だったのは、スポーツチームの例を通じて、単に打率ではなく得点貢献度に注目することでチームが勝つための分析方法を実践している点でした。 問題解決の枠組みは? さらに、問題解決のアプローチ方法として、「what、where、why、how」という枠組みを学びました。また、分析の視点としてインパクト、ギャップ、トレンド、ばらつき、パターンの五つの視点を持つことの重要性を認識しました。それぞれの視点に合わせたグラフの見せ方も習得しました。 今後の実践計画は? これらの学びを実務に反映させるべく、現在進めているマーケットプランの中で実践していきたいと思います。具体的には、仮説思考を取り入れてロジカルにフレームワークを組み立て、その仮説をデータで証明するために正しいグラフを選び、説得力のある資料を作成します。そのために、フレームワーク、ロジカルシンキング、グラフの見せ方を再度復習しました。 9月14日から9月16日にかけての期間に、これらの復習を行いました。そして、9月中には今回習ったことを営業組織にフィードバックし、アウトプットに向けての準備を進めます。これらの知識とスキルを、日常のマーケットプラン、アカウントプラン、計数管理、CS調査に役立てていきます。
AIコーチング導線バナー

「営業 × 説得」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right