戦略思考入門

データで描く経営の未来

感情論よりデータは? 今週の学習を通じて、課題解決において感情論ではなく、客観的なデータに基づいた多角的な分析と、論理的に伝える力が不可欠であるという点を強く実感しました。タクシー業界の市場縮小、運転手不足、燃料費の変動リスクなど、一見ネガティブな情報も、なぜ自社にとって問題なのか、またその解決策がどのように経営に貢献するのかを具体的に示すことが重要だと感じました。例えば、配車アプリ導入の際には「便利だから」という感情論ではなく、実働1日1車あたりの運送収入の向上や燃料費削減といった定量的なメリットを提示し、説得力を高める必要があります。同様に、提携相手との関係では、懸念に対して新たな顧客ネットワークへのアクセスやノウハウ共有といった共存共栄のメリットを論理的に伝えることが重要でした。 実務でどう活きる? また、この学びは私の実務にも大いに役立つものです。これまで漠然と抱えていた課題も、現状を数値で把握し、その原因を深掘りすることで具体的な解決策へと繋げることができると考えます。特に、外食業態の現場では新メニュー開発や既存メニューの見直しにデータ分析の手法を応用することで、「現状維持は衰退」という視点から戦略的にアプローチできると感じました。顧客データを詳細に分析し、どのメニューが十分に売れていないか、また潜在的なニーズがあるかを客観的に把握することにより、食材原価の変動リスクを踏まえた仕入れルートの見直しや、ロス削減を図るメニュー設計など、収益性向上につなげることができます. 店舗戦略は何が鍵? さらに、店舗の集客戦略やマーケティング活動においても、周辺の人口構成や競合店の情報を詳細に分析し、ターゲット顧客を明確化することで、適切なプロモーション戦略を展開することが可能です。例えば、若年層が多いエリアではSNSを活用したプロモーション、高齢者が多い地域ではテイクアウトやデリバリーサービスの導入など、具体的な戦略を立案していきます。また、店舗の強みや独自性を明示し、効果的に伝えることで、顧客へのアピール力を高める狙いがあります. 人材育成方法は? さらに、従業員の育成やシフト管理の効率化にも今回の学びは役立ちます。従業員のスキルや得意分野をデータとして可視化することで、適切な人員配置を行い、少ない人数でも店舗運営の質を維持する工夫が求められます。従業員教育においては、単にマニュアルを渡すのではなく、売上データや顧客からのフィードバックを共有し、なぜそのメニューが支持されているのか、背景を理解してもらうことで、サービスの質を向上させる取り組みが重要だと感じました. 売上分析のポイントは? まずは、POSシステムの売上データを活用し、日次・月次売上だけでなく、メニューごとの販売数、時間帯別の客数、客単価、曜日別の変動などの詳細な数値を抽出し、現状分析を強化します。特定メニューの売上低迷が続く場合は、その原因が季節性、価格設定、競合店の影響のいずれかを深掘りするために、顧客アンケートや口コミ分析も併せて実施します. 会議運営をどう改善? 次に、分析結果を基に新メニュー開発会議の進め方を見直し、シェフのアイデアに頼るだけでなく、データに基づいた「売上改善」や「顧客ニーズへの対応」を目的とした会議運営を行います。具体例として、売上が低迷するランチメニューを刷新して客単価の向上を目指すといった目標設定を行い、食材選定、原価計算、試作の各段階でデータを活用しながら評価します。会議では、単なる味の評価だけでなく、競合との比較やターゲット層への訴求力など多角的な視点から議論を進めます. 情報共有はなぜ重要? 最後に、従業員間での情報共有と教育を強化することで、データと論理に基づいた経営判断ができるよう努めます。抽出した売上データや顧客フィードバックを定期的に共有し、各自が「なぜこのメニューが売れているのか」を理解する機会を設けることで、課題意識を高め、店舗全体の生産性と顧客満足度の向上につなげていきます.

アカウンティング入門

数字が繋ぐ出店成功の秘訣

損益計算書の要点は? 損益計算書は、会社の収益状況を示す成績表として、売上総利益、営業利益、経常利益、税前当期純利益、そして最終的な当期純利益という5つの基本項目から構成されています。売上総利益は、商品やサービスの販売前に発生する費用を差し引いた数値を示し、営業利益は本業から得られる利益を表します。さらに、海外からの材料調達に伴う為替差益や、店舗出店時の支払利息などの財務活動による損益を加えたものが経常利益となり、そこに店舗売却益や火災などの一時的な損益を反映させることで税前当期純利益が算出されます。最終的に、税金を差し引いた当期純利益を把握するためには、まず全体の売上推移や各項目の売上比率に着目し、過去の実績や業界平均、自社目標との比較が不可欠です。 出店事例の意義は? 実際のカフェ出店事例では、出店コンセプトの明確化が極めて重要であることを学びました。コンセプトが明瞭になると、それに応じた仕入、店舗設計、採用、設備投資、商品開発などの基本事項が見えてきます。その過程で発生する各種コストの計算も可能となり、継続的な事業運営のために損益計算書を活用して売上アップや経費の見直しといった対策が求められます。売上規模に応じて最終的に残る金額が変化することからも、売上確保の重要性が実感でき、また、販売費や一般管理費の工夫により利益率が改善できる可能性があることが確認されました。 現状把握の方法は? 担当店舗では、まず出店コンセプトに立ち返り、現状とのギャップを把握することが必要です。現状、店舗従業員がどの程度コンセプトを理解しているか、また、従業員や地域、顧客が考える理想のコンセプトとは何かを調査し、今後の方向性を明確にした上で損益計算書を再確認することが求められます。さらに、コンセプトの違いが損益計算書の構成比にどのように影響を及ぼしているのかを把握し、店舗責任者と現状の課題やその対策について話し合うことで、本社と店舗が共通認識を持ち一体となって事業運営に取り組む体制を整えることが重要です。 数値理解を深めるには? 店舗責任者向けの研修では、今回の学びを活かし、各自の数値に対する理解度を高めることを目指します。店舗ごとに異なる規模や運営体系の中で、自ら課題を抽出し改善策を提案できるレベルへ引き上げるため、損益計算書の読み方や、毎月の売上達成状況の確認が基本であることを強調します。講義資料作成にあたっては、単に言葉の定義を伝えるだけでなく、その意味や具体的な活用方法を実践に直結する事例を交えて、すぐに取り組める内容に仕上げることが狙いです。 店舗分析はどう進む? また、既存の担当店舗については、まず上司との間で出店コンセプトの認識を統一し、経営計画書などからコンセプトを再確認します。その上で、店舗の事業活動が売上、利益、経費とどの程度連動しているかを客観的な数値で分析し、店舗責任者に現状の課題を明確にさせることが大切です。具体的な改善策を、損益計算書上のどの項目にどのように反映されるのかという観点から検討し、数値的根拠をもって提案させることで、責任者自身が解決策のイメージを具体化できるよう指導します。 効果の伝え方は? さらに、上司へ改善策を提案する際には、業界の一般的な数値や他社の運営状況を踏まえ、根拠を強化した説得力のあるアプローチが必要です。キャッシュフローの分析など、同業他社の事例を参考にする視点も取り入れながら、改善策の実現に向けた動きが求められます。 自発的研修の意義は? 研修資料の作成に際しては、特に運営費及び一般管理費に着目し、各店舗の費用状況を業界平均や社内の他店舗との比較を通じて分析する内容を検討します。受講者自身が「自らの店舗分析」を通して、主体的に店舗改善に取り組む意識を持てるよう、やらされる研修ではなく自発的な行動を促す構成に留意することが重要です。

クリティカルシンキング入門

実案で磨く、問いと提案の極意

マック事例の魅力は? マックの経営改善の事例では、飲食店が顧客にどのような仕掛けを施しているのか、そのプロセスを学べたことが大きな収穫でした。本質的な課題に迫る問いや考え方を理解するため、一連の流れを整理し、復習することが理解度をさらに高めるのに役立ちました。 顧客事例の意味は? 自身の業務では、直接売上や顧客へのアプローチ、営業活動に関わっていないため、講義での現実の顧客事例の理解は非常に貴重でした。もしも最前線で営業を担当しているなら、提供する製品を具現化するイメージを持ち、ペルソナ設定やデジタルマーケティングの手法を活用しながら、プレゼンテーションやセールストーク、販売手法、アフターサービスを体系的にまとめ、各顧客に合わせた販売戦略を確立することになるでしょう。 自業応用のヒントは? また、飲食店経営の事例からは、自分の業務にどのように応用できるかをイメージすることが大切だと感じました。課題の記載にはピラミッドストラクチャーやMECEの考え方を用い、時間軸、優先度、業務効率を考慮することで、組織内の意思決定に役立てる意識を持つようにしています。 本質課題の意義は? 「本質的な課題」とは、形式的な課題ではなく、物事の核となる部分を捉え、整理・分解することから解決策を導くアプローチです。課題を提示する際、核心を押さえた内容であっても、相手によっては関心が薄いことがあるため、視点を変える工夫が求められます。これまで、理解が得られなかった場合は無理に誘導せずに終わらせていた点を反省し、今後は相手の視点に立って一工夫を加えるよう努めます。 データ運用の疑問は? また、業務においては大量のデータを扱う中で、定型的なグラフを使った比較がルーティン化してしまっています。例えば、一部の部門ではBIツールとしてタブローが利用されていますが、他部門では別のサーバーのデータが正確とされ、導入に慎重な面もあります。今後は、現状の前提を見直し、利用可能な範囲を点検していく必要を感じています。 問い設定はどう? さらに、AI時代においては「問いの設定力」が極めて重要なスキルとなります。期待する答えを引き出すための問いを、行動経済学や心理学を加味しながら設定するには、実践と訓練が欠かせません。自らの得意分野とは異なる領域に挑むことで、問いの立て方の精度を高め、スキル向上を目指しています。 提案準備の工夫は? 業務企画の現場では、学んだ内容をプレゼンテーションに活かし、説得力のある提案を行えるよう努めています。同時に、データ利活用における課題についても、データ量の大きさやシステム構築の面から自らの知識を深め、SQLのトレーニングを通じて効率的なデータ処理を実現するための準備を進めています。 思考整理のポイント? クリティカルシンキングに関しては、Week1で学んだ基礎を基に、自分の考えやアイデアを整理して伝える力の強化を目指しています。マインドマップやピラミッドストラクチャー、MECEの手法を活用し、視点を変えて相手にわかりやすい説明を心がけ、試行錯誤を重ねながら整理力を向上させています。 言語化の成果は? また、日々のトレーニングとして、1週間で400文字程度の言語化を行っています。日経のアプリを活用し、1日2回、300文字程度で議題に関して知識の範囲内で整理し素早く書く練習を継続しています。これにより、書いた内容の振り返りと分析から課題を抽出し、より簡潔に伝える力の向上を目指しています。

クリティカルシンキング入門

問いと構造で開く新たな気づき

どうして思考が進化? これまで「仕事の質は思考の質」という信念のもと、デザイン思考やクリティカルシンキングを学んできましたが、今回、構造化思考に基づく「モデリングによる可視化」の視点を取り入れることで、思考の深さと広がりが一段と増したと実感しています。 連動の仕組みは? 「問いを立てる」「構造で捉える」「全体像と要素を行き来する」というプロセスは、各々のスキルとして独立しているのではなく、互いに連動して初めて真に整理された思考につながると感じました。システムモデリングを活用することで、複雑な課題や状況を構造的に可視化できるだけでなく、「なぜそうなっているのか」「どこに本質的なズレがあるのか」というクリティカルな問いを支える土台が形成され、対話や資料作成における表現の精度や説得力が明確に向上したことが印象的でした。 聞き方はどう変わる? 現場でのヒアリングや議論においては、単に情報を受け取るのではなく、頭の中に構造モデルを描きながら話を聞くことで、問いの立て方が変わり、見えてくる情報の質も高まることを実感しています。こうした思考の流れを意識することで、相手の論点や曖昧な仮説も整理し、共通の理解を形成する助けとなっています。 学びの効果は? 今回の学びは、事業や組織の開発における構想フェーズ、すなわち対話や構想の整理、共通理解の形成に非常に有効であると感じました。新規事業の企画段階では、単にアイディアを列挙するのではなく、背後にあるニーズや構造的な背景に目を向け、因果関係や前提構造を可視化することで、抽象的な着想を現実的な構想へと橋渡しする力が求められます。 合意の仕組みは? また、組織開発の現場では、関係者間で異なる立場や視点が対話を困難にすることが多いですが、モデリングを通して共通の構造や相互理解の枠組みを示すことで、合意形成がスムーズになりました。抽象度の高いビジョンづくりや課題整理のワークショップにおいて、全体構造と個々の要素を行き来するプロセスは、議論の接続点を明確にし、実践的なナビゲーションとしての役割を果たしています。 問いが導く方法は? 今後は、論点整理の初期段階において「問いを起点に全体構造を描く」姿勢を習慣化し、実際の対話や企画立案の場面でモデリングを活用していきたいと考えています。具体的には、企画会議や構想段階のディスカッションで、まず本質的な問いを明確にし、それに沿って情報や仮説を構造的に整理していくことが重要です。さらに、コンテキストモデルや因果ループ図などを用いて思考の流れや対象の構造を可視化し、相手との認識の違いを明確にしながら議論を進めることで、建設的な対話と提案につなげたいと思います。 なぜ振り返ればいい? また、定期的な振り返りを行い、「問いの立て方」「構造化の質」「モデルの解像度」といった観点から自分の思考プロセスを見直すことで、見落としていた視点や過度な単純化に気づく機会を増やしたいと考えています。その経験をチーム内で共有することで、互いに思考を磨き合い、より高い解像度の意思決定と支援を実現していけると信じています。 モデリングの真髄は? このように、モデリングによる可視化のアプローチは、思考を組織的な資産として扱い、再現性のあるスキルへと進化させるための実践的な手法です。今後も実務の各フェーズでこの手法を取り入れることで、より本質的で説得力のあるプロセスを追求していきたいと思います。

データ・アナリティクス入門

仮説立案と検証で見つけた新たな視点

仮説立ての難しさをどう克服する? 前回までの演習で、ヒントがない状態で仮説を立てることに慣れておらず難しさを感じました。その後、講義を受けて新しい学びを得たので、以下に講義のメモをまとめます。 効果的な仮説はどう構築する? まず、仮説を考える際のポイントですが、複数の仮説を立てることが重要です。決め打ちにせず、異なる切り口から仮説を立て、仮説同士に網羅性を持たせる必要があります。そして、仮説を検証するためのデータを評価する際には、何のために比較をするのかを考え、その意図を持って選択することが大切です。 仮説思考で何を得られる? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があります。結論の仮説は、ある論点に対する仮の答えであり、問題解決の仮説は具体的な問題を解決するための仮説です。仮説を考えることの意味としては、検証マインドの向上と説得力の強化、関心と問題意識の向上、そしてスピードアップが挙げられます。 マーケティングミックスの整合性は? マーケティングミックスについては、製品戦略(Product)、価格戦略(Price)、流通チャネル(Place)、コミュニケーション戦略(Promotion)の要素を整合させることが必要です。また、ICTによる新しい手法やブランド価値の向上により、価格競争から抜け出すことを目指します。 仮説思考を鍛える方法は? 仮説思考を鍛えるための方法としては、知識を広げて耕すことが重要です。「なぜ」を5回繰り返す、別の視点から見る、時系列で動的に把握する、思考実験的に将来を予測する、類似や反対する事象とセットで考えることが有効です。その後、ラフな仮説を作り、新しい情報と組み合わせながら常識を疑い、発想を止めずに検証します。また、必要な検証の程度を見極め、情報を集めて分析し、仮説を肉付けして、間違っている際にはやり直します。 リーダーはどう支援する? リーダーの役割としては率先垂範すること、質問を通じてメンバーを育成すること、チームで役割を分担して仮説を検証することが求められます。 カスタマージャーニーで何を意識する? カスタマージャーニーについては、新しい5Aカスタマージャーニーを理解し、顧客が推奨者となるような有効なコミュニケーションを継続することがポイントです。 クロス分析の利点は? クロス分析では、複数の項目でデータを集計し、傾向や意味合いを把握します。状態の把握や傾向分析がしやすく、次の打ち手が立てやすくなります。 マーケティングの基礎は何か? マーケティングの基礎として、セリングとマーケティングの違いを理解し、顧客ニーズを捉えて顧客満足を得ることが重要です。マーケティングは「買ってもらえる仕組みづくり」です。 仮説を実務にどう活かす? 今後、WEBでのリード獲得の企画にこれらの学びを活用します。仮説を感覚的に立てるのではなく、根拠のある説得力を持った仮説を立てることを目指します。また、フレームワークの活用が有用であると感じたため、仮説を立てる訓練を重ねることを習慣づけます。分析においても、仮説を検証するために検証の必要程度を見極め、必要な情報を集め、クロス集計などを活用することを心がけます。最初は大変かもしれませんが、習慣づけることでスムーズに実践できるよう努めます。

データ・アナリティクス入門

仮説思考で切り拓く営業の未来

仮説の意味は? 今週の学習では、「仮説」とは、不確かな状況下で行動するために立てる仮の答えであるという理解を改めました。特に、「結論の仮説」と「問題解決の仮説」という2つの分類が印象に残りました。 検証のプロセスは? 結論の仮説は、戦略や提案を行う際に、まず仮の答えを設定することで議論の出発点を作り、その後の検証と修正を通じて精度を高めるアプローチです。一方、問題解決の仮説では「What→Where→Why→How」といった段階的な掘り下げにより、原因と対策を導き出すプロセスが紹介され、思考の整理に非常に効果的だと感じました。 現場で有効か? これらのフレームワークは、限られた情報の中で迅速な意思決定が求められるビジネス現場において、強力なツールとなると実感しています。私は、AIやデータ分析関連のソリューションを扱う営業を担当しており、顧客の課題特定や提案内容の作成において、不確実な情報を扱う機会が多い中、学んだ「仮説思考」が非常に有効だと感じました。 仮説検証のコツは? 例えば、初回訪問時に顧客がまだ課題を明確に言語化していない場合でも、「業務プロセスの非効率があるのではないか」「蓄積されたデータがうまく活用されていないのではないか」といった仮説を立てることで、仮説検証型のヒアリングが可能となります。これにより、単なる情報収集に留まらず、仮説に基づいた深掘り型の対話で本質的な課題に近づけると感じました。 提案の説得力は? また、提案の段階においては、「ある部署では意思決定が属人的で、データドリブンな仕組みの導入により業務効率を向上できるのでは」という結論の仮説を基に提案を設計することで、ストーリー性のある説得力の高い提案が可能になります。商談時間が限られている中で、このような仮説をもとにしたアプローチは非常に重要と感じました。 失注の理由は? さらに、失注や案件停滞の原因を検証する際にも、「なぜ受注に至らなかったのか」という問題解決の仮説を設定することで、次回以降の提案の質を高めるフィードバックループを構築できると感じました。 商談前の工夫は? 具体的な取り組みとしては、まず初回商談前に「業界特性・顧客規模・職種」などの観点から、課題仮説とニーズ仮説を2~3パターン想定し、ヒアリング項目に落とし込むテンプレートを自作しています。たとえば、製造業では「設備点検や不良検知にAI活用のニーズがあるのでは」といった仮説を用意し、仮説検証型の商談を組み立てることで、短期間で核心的な課題に迫るという方法です。 案件停滞の原因は? また、受注が見込まれていたものの急に停滞した案件については、どのステークホルダーが懸念しているのか、どの提案要素に説得力が不足していたのかといったWhy型の仮説を設定し、上司やチームとの定例レビューで検証しています。これにより、再提案やフォローアクションの精度を高め、案件化率の向上を目指しています。 アウトプット文化は? さらに、営業週報や朝会において、「この案件は〇〇という仮説でアプローチします」といった発言を推奨し、仮説をしっかり言語化してアウトプットする文化を醸成しています。こうした取り組みは、個々の思考の質の向上やナレッジの蓄積につながると実感しています。

データ・アナリティクス入門

問題解決の力を引き出すステップ学び

問題解決の基礎ステップとは? 問題解決のプロセスとして「What」「Where」「Why」「How」のステップがあることを学びました。 最初のステップである「What:問題の特定」では、定量情報を用いて"あるべき姿"と"現状"を比較し、"ギャップ"を明らかにすることが肝要です。このステップを思いつきや決め打ち、闇雲に行うと、以降の工程が無駄になるリスクがあります。 ロジックツリーの活用法は? 次のステップである「Where:問題箇所の絞り込み」では、「What」のステップで特定した問題を起点として、ロジックツリーというフレームワークを用いてMECEに要素を分解します。全体を俯瞰し、問題に対する影響度から見るべき範囲と見なくてもよい範囲を絞り込み、分析の優先順位を決めることが重要です。ここでも思いつきや決め打ち、闇雲に取り組まないことが大切です。 経営資源は有限であるため、短期的な観点ではそれらを前提や制約条件として考慮し、「What」や「Where」のステップを効率的に進めることができます。ただし、経営資源は変化するものであり、中長期の視点で見る際には前提や制約条件として考慮すると網羅性に欠け、全体像を把握できなくなるリスクがあります。 また、「What」「Where」のいずれのステップにおいても、複数の切り口を持ち、複数の仮説を立ててデータにあたることが重要です。切り口の感度や仮説の筋の良さが問題解決の精度に影響を及ぼしますが、これは「どれだけ現場のことを理解しているか」と「どれだけ高い視座と広い視野を持てるか」に依存すると感じました。 問題解決に活かすために これまでの自分の問題解決のアプローチは短期的かつ思いつきや決め打ちが多く、時間的制約という思い込みの中で深く考えることができていなかったと気付きました。これでは、切り口の感度や仮説の筋の良さが磨かれるはずもありません。 次期中期事業計画の策定時に今回の学びを活かします。現中計の振り返りをふまえて次期中計を策定する際、より良い未来に向けて「なぜその目標を設定するのか」「なぜそれを独自性(強み)と考えたのか」「なぜそれをやる or やらないと考えたのか」「現経営資源を考慮した際、なぜその方針が妥当なのか」を分析結果を用いて説得力を持たせたいと考えます。「目指すべき目標を明確にする」「独自性(強み)を認識する」「やることとやらないことを区別する」「目標への道のりの妥当性を示す」、そして戦略の構造化を図る。 関係者との協力をどのように? 周囲の協力を得つつ、関係者と一緒に「高い視座と広い視野」を持ち、三現主義の考え方に基づいて、目的に適したフレームワークを使いながら、一つ一つしっかりと考え進めていきたいと思います。そのために、今まで以上に上位層や組織の枠を超えたコミュニケーションを増やし、今回学んだロジックツリーを戦略の構造化で使うべく、日々の業務で活用し自分のものとしていきたいと思います。 上位層との1on1を通して「高い視座と広い視野」を獲得し、メンバーとの1on1では問題解決のプロセスを意識し、ロジックツリーの利用を促進し「全員が使えるフレームワーク」として根付かせていきます。

クリティカルシンキング入門

クリティカル思考で挑む6週間

どの過程を振り返る? 今週の学習では、6週間を振り返りながら、提案に至るまでの思考プロセスを整理することに取り組みました。具体的には、以下の5つのステップで学習を進めました。 イシューは何かな? まず第一に、「イシューを特定する」ことが求められました。どの取り組みが課題解決に最も効果的なのかという問いを明確にし、内部・外部環境やデータを検証することで、本質的な論点を捉えることが目的です。このプロセスでは、イシューを共有し、次々と立てることが重要とされました。 どうやって主張する? 次に、イシューに対する主張と根拠を組み立てる際、「問い続ける姿勢」を重視しました。誰に、どの立場で、どのシーンでという視点を踏まえながら、抽象と具体の両面や対となる概念を行き来し、案や視点の幅を広げることが大切でした。 どのデータを検証? 三つ目のステップでは、目的に沿ったデータの分解、加工、グループ化、並び替え、計算要素の追加、さらにはグラフ化を通じて仮説検証を進めました。5W1Hの観点からデータを細分化し、一つの傾向に留まることなく、複数の要素を使ってクリティカルに検証する方法が求められました。 どの伝え方が有効? 四つ目の段階では、整理した示唆を相手に効果的に伝えるため、「相手のニーズから理由づけを組み立てる」という手順が採用されました。相手が何に関心を持っているかを起点に論点を絞り、具体的な事実や数字を加えることで、説得力のある文章へと落とし込みました。 どう資料を魅せる? 最後に、資料の「見せ方」に留意し、メッセージと整合したグラフやスライドの構成にまとめました。時系列に縦棒、比較に横棒を用いるなど、上から下・左から右への自然な視線の流れを意識して情報を配置することで、提案内容が相手に理解されやすくなると感じました。この一連のプロセスが、クリティカル・シンキングを実務に活かした提案へとつながると理解しました。 自社戦略はどう決める? また、自社業務と顧客先業務の双方で課題解決に焦点を当て、本講座で学んだ内容を実践していきたいと考えています。自社業務では、IT戦略の検討において、どの領域に投資するかという提案を行うため、ビジネスインパクトが大きな領域を見極めることが重要です。自社の売上データを細分化し、内部・外部環境を分析することで、どの領域に大きな影響があるかを把握します。そして、従来のIT導入促進を目的とする戦略ではなく、顧客企業の利益拡大を狙った戦略を問いとして立てたいと考えています。 効率化の提案は? 一方、顧客先業務では、業務効率化の提案を目指します。システム検証業務において最も時間を要している工程を見直し、どのタスクが削減可能かという問いを立てることで、効率向上につなげたいという意図です。 どう改革につなぐ? このように、クリティカル・シンキングを実践することで、自社・顧客双方において課題解決への新たなアプローチを追求し、最終的には企業や社会を改革できる人材を目指していきたいと考えています。

戦略思考入門

本質を捉える学びの軌跡

分析フレームって何? 戦略立案のためのフレームワークとして、3C分析、SWOT分析、クロスSWOT分析、そしてバリューチェーン分析を学びました。これらは、単に使うだけでなく、「本質を見抜く思考力」を養うための手段であると痛感しました。3C分析では、顧客、競合、自社という視点から現状を多面的に捉える大切さを学び、特に顧客分析では市場全体(市場マクロ)と個々の顧客(顧客ミクロ)の両面からニーズを探ることで、購買決定要因を明確にする意義を実感しました。 競合分析の見方は? また、競合分析においては、ライバル企業だけでなく、そのビジネスモデルや強み・弱み、そして自社との違いを把握することが戦略策定の出発点になると理解しました。自社分析にも、データや現場の声などの定量・定性の両面から冷静に状況を見直し、「今の強み」に過信せず常に再評価する姿勢が求められると感じました。SWOT分析やクロスSWOT分析では、内部要因と外部要因を掛け合わせ、「だからどうするか?」という具体的戦略の策定が重要である点も印象的でした。さらに、バリューチェーン分析では、企業活動全体を俯瞰し、どの工程で付加価値が生まれているのか、また改善の余地があるのかを見極める視点が有用だと学びました。 IT現場で活かせる? この学びは、IT業務の現場でも大いに活用できると考えています。たとえば、要件定義の段階では3C分析を用い、顧客企業の業界動向や利用者の業務課題を深く理解することで、単にシステムを作るのではなく、顧客の本質的なニーズや業務上の重要成功要因を捉えることができます。さらに、競合分析の視点を取り入れることで、他社との差別化や自社の強みを明確にし、説得力ある提案が可能になると思います。 開発の質はどう? システム開発の段階では、バリューチェーン分析が有効です。開発プロセス全体を「付加価値を生む流れ」として把握し、各工程ごとに品質や効率の差がどこで生じているのかを明確にすることが、プロジェクト全体の生産性向上や品質改善につながるでしょう。試験工程においては、SWOT分析やクロスSWOT分析を応用し、試験体制や品質管理の強み・弱み、さらに外部の要求や技術の変化を加味した上で、具体的な改善策を導き出すことが重要です。 委託先との連携は? 最後に、バリューチェーン分析についての疑問もありました。動画学習では、商品企画から物流、販売、アフターサービスまでを分けて自社の優位性を探る方法が紹介されましたが、必ずしも全ての企業がこの一連の流れを持つわけではありません。その場合でも、分析は有効です。たとえば、自社が一部の工程を外部に委託している場合には、内製部分や連携先との協力体制、または各工程間の価値の受け渡しに着目することで、どの部分で差別化が図れるかを考察できます。こうした視点を取り入れることで、企業活動全体の流れを俯瞰し、自社の優位性や改善点をより明確にできるのではないかと思います。

データ・アナリティクス入門

論理的思考力を徹底的に学ぶ: 実践例多数!

問題解決のフレームワーク 講座全体を通じて、特に学びとなったポイントは次の通りです。 まず、問題解決のフレームワーク「What」「Where」「Why」「How」の順番で考えることが重要であることです。これにより、問題解決のプロセスが論理的かつ体系的になります。 データ分析の視点は? 次に、数値データを分析する際に漠然と数字を見るのではなく、定量分析の5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を持つことが大切です。これにより、効率性や再現性が向上し、同じ気付きや示唆をより効果的に得ることができます。 また、平均値を取る際には「標準偏差(データのばらつき度合)」という視点を持つことが必要です。仮に平均値が同じであっても、「ばらつきがある」「ばらつきがない」ではデータの意味合いが変わってくるからです。 Howで成果をどう上げる? 問題解決のフレームワークの最後「How」で解決策を考える際には、選択肢を絞り込むための判断基準を明確にすることが肝要です。これにより、成果を上げる可能性が高まり、仮に成果が上がらなかった場合でも、どの判断基準に問題があったのかを振り返ることで、さらなる改善が可能となります。 グラフ選びの新たな視点 関連動画で学んだポイントもいくつかあります。グラフを作成する手順「仮説や伝えたいメッセージは何か?」「比較対象は何か?」「どのグラフを使うのか?」は新しい学びでした。これまでの私は最初から「どうグラフを作ろうか」と考えていましたが、1と2を先に考えることで、自然とどのグラフを使うべきかが見えてくることに気付いたのです。 さらに、マイナスの項目がある場合にはウォーターフォールが有効であることや、何を比較対象とするかによって適切なグラフが異なることも学びました。例えば、ギャップがある場合は横棒グラフやウォーターフォール、時系列やトレンドがある場合は折れ線グラフや縦棒グラフ、散らばりや構成比率を示したい場合はヒストグラムや円グラフ、相関を示したい場合は散布図がそれぞれ適しています。 学びの実践で何が変わる? これらの学びをいくつかの面で活用したいと考えています。まず、自社サービスの課題の明確化や改善に向けて、営業プロセスの課題を整理し、日々の定例ミーティングでチームメンバーと議論を深める場で、得た知識を実践したいと思います。自分だけでなく、チーム全体に学びを共有することで、議論や分析の質を高め、より有効なアクションに繋げたいです。 また、経営分析(財務諸表の比較分析)においても今回の学びを応用するつもりです。四半期ごとに財務諸表を比較分析し、問題を具体的に特定することで、株主への業況説明の説得力を高めたいと考えています。そのためには関連書籍で知識の増強に努めたり、必要に応じて今回のような講座に参加することも検討しています。

クリティカルシンキング入門

小さな気づきが未来を拓く

相手にしっかり伝わる? 「日本語を正しく使う」という項目があるのは、分かりやすい日本語を書けていない人が多いことを示唆していると感じています。そのため、自分自身もこの文章で本当に相手に伝わっているのか、謙虚な姿勢で常に考えるように心がけるべきだと思います。 論理は整っていますか? 理由を述べる際には、必ず「対」となる要素を意識することが大切です。そうすることで、論理の層が整い、MECEの原則に沿った説得力のある説明が可能になります。理由の柱に対して、具体的な例を複数挙げることを心がければ、「ほかにないのか?」という疑問を未然に防ぐ手助けにもなります。 さぼりの影響は? また、自分がさぼってしまった結果は相手にとって大きな負担となります。つい「まいっか」で提出してしまいがちですが、本当に相手に伝わっているのか、批判的な視点を持って内容を見直す癖をつけることが必要です。 論理の穴は? 自分が何か納得できなかったり、相手の話を聞いてどこか違和感を覚えた場合、論理に不備がある可能性が考えられます。そのときはピラミッドストラクチャーを活用して、論理の構造をチェックし、飛躍や見落とし、無理なつなげ方がないかを確認することが有効です。提案をする際には、まずピラミッドストラクチャーを作成してみると良いでしょう。 グループで気づいた? (グループワークでの気づき) グループワークの中で、まず問いに答えなければならないところを見落としていたことに気づきました。理由だけに焦点をあてるあまり、本来の問いに対する回答が十分にできていなかったのです。考えた後で改めて、問いに対する答えになっているかどうかを確認するように心がけます。 定義は正しい? また、定義を自分勝手に決めてしまう危険性も指摘されました。例えば、祝日の定義を自分流に解釈してしまうと、相手に「その定義で良いのか?」と疑念を抱かせ、ノイズを生む可能性があります。そのため、誰もが納得できる一般的な定義を使用することが重要です。 対の視点はどう? さらに、考えがまとまらないときは、対になるものを考えるという方法も有効です。たとえば、祝日である理由を経済的なマクロの視点だけで説明するのではなく、対照となる要素は何か、といった視点も取り入れるべきでした。 提案は伝わってる? そして、提案をする際には、あらかじめピラミッドストラクチャーを作成し、それを基にメールなどで提案することが望ましいと感じます。実際、ピラミッドストラクチャーの練習はしていたものの、実務では十分に活用できず、提案内容に論理の飛躍や漏れ、無理なつなげ方が生じた結果、相手に否定的な印象を与えてしまうことが多かったためです。今後は、納得いただきやすい提案ができるよう、ピラミッドストラクチャーを積極的に活用していきたいと考えています。

データ・アナリティクス入門

データ分析で変わる未来への第一歩

データ分析の考え方をどう変える? 今週の講義を通じて、データ分析に対する考え方が大きく変わりました。これまでデータ分析というと、「データを集めて傾向を見る」という漠然としたイメージがありましたが、実際には緻密な準備と明確な目的意識が必要であることを学びました。 目的をどう合意する? 特に印象に残ったのは、「分析の目的を組織で合意を得てから始める」という考え方です。データで何を明らかにしたいのか、その結果をどのような行動につなげたいのかを関係者と共有することで、より効果的な分析が可能になります。目指すアウトプットや、その結果によってどのように行動変容を促したいのかを事前に合意できればと考えています。 比較分析がもたらす示唆は? また、データは比較によってその意味が見えてくるという点も重要な学びでした。時系列での変化や異なる属性間の違いを分析することで、より深い示唆が得られます。さらに、分析結果を報告する際には、次のアクションプランを含めて提案することで、組織の意思決定に貢献できることを理解しました。 リスキリング企画の必要性は? 現在担当しているリスキリング企画においても、研修後のアンケートの分析アプローチを見直す必要性を感じています。現状の満足度評価だけでなく、部署別の研修効果の違いや時間経過による行動変容を測定することで、より効果的な研修プログラムが設計できると考えています。 新規事業支援での戦略的活用 新規事業立ち上げ支援においては、ユーザー検証のデータをより戦略的に活用することが可能です。顧客属性による反応の違いやサービス理解度の変化を定量的に把握することで、事業戦略の精緻化が図れるでしょう。経営層への報告においても、データに基づく明確な示唆を提示し、具体的な投資判断の材料を提供できます。 研修アンケート設計の見直し 来週からは、現在実施中のリスキリング研修に関するアンケート設計を見直します。具体的には、研修内容の理解度や実務での活用意向に加え、3ヶ月後の行動変容を測定するための追跡調査の仕組みを構築します。 仮説の明確化と調査設計 新規事業の計画では、ユーザー検証前に仮説を明確化し、チームで合意します。その後、アンケートやインタビューのスクリプトを作成します。例えば、「このサービスは特定の年齢層でニーズが高い」という仮説を立て、それを検証できる調査設計を行います。 経営会議に活用するデータ分析 経営会議では、これまでのユーザー検証データを再分析し、顧客属性別の反応傾向や時系列での変化を可視化します。特に投資判断に直結する指標については、比較分析を通じて説得力のある資料を作成します。 これらの取り組みを通じて、データに基づく意思決定プロセスを組織に定着させ、より効果的な事業展開と人材育成を実現したいと思います。
AIコーチング導線バナー

「説得」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right