クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

新視点!対概念で解く課題の秘密

今回変更する振り返り文章 学びのポイントは何? 今回の学びでは、課題解決のプロセスを段階ごとに整理する方法と、従来のフレームワークにとらわれずに課題の本質を捉える「対概念」という考え方を学びました。先週は3Cや4Pといった分析手法を用いて問題点を洗い出す例に触れていたため、今回の新たな視点は思考の幅を広げる刺激になりました。 対概念の意味は? 「対概念」とは、問題のある箇所とそれ以外の要素を対比しながら考えるアプローチです。たとえば、「ターゲット設定に問題がある」という見方に対し、設定以外に問題が潜んでいる可能性を同時に捉えることで、より柔軟な課題設定が可能になります。 改善案の選び方は? また、今回学んだ内容は、最適な改善案を選ぶために各案をコストやスピード、チーム内の連携といった評価基準で総合的に判断する重要性も再認識させてくれました。具体例として、Webデザインの改修にあたり、内製するか外注するかを検討する場合の評価方法が挙げられ、数ある案から最も有益なものを選ぶプロセスに参考になりました。 A/Bテストの狙いは? さらに、従来の案と新たな案を比較するA/Bテストの手法についても学びました。テスト実施の際は、両案の条件を可能な限り揃え、外部環境の変動にも配慮してランダムにテストを行う点がポイントとされています。 実用性の確認方法は? 自社の業務においては、今回学んだ「対概念」の視点が非常に実用的だと感じています。滞っているシステム改修作業の設計を見直す際、従来のフレームワークに限定されず、柔軟なアプローチで打ち手を検討する一助となると実感しました。

戦略思考入門

受講生の学びが未来を切り開く鍵

ターゲットと独自性は? 差別化を図るためには以下のポイントが重要です。まず、ターゲットを明確に絞り込み、顧客のニーズや嗜好を深く理解します。これにより、どのような特徴やサービスが求められているのかを把握します。そして、競合他社を分析し、自社の独自性を際立たせる要素を見つけ出します。特に顧客に対して独自の価値を提供し、それを明確に伝えることが重要です。 なぜ模倣を防ぐ? また、よくある模倣を防ぐために、アイディアは継続的に考え抜く必要があります。簡単に思いつくことは誰にでも容易に真似されてしまうため、差別化には特異性(付加価値)が求められます。例えば、ホテルやレストラン、あるいは家電製品など、多くの業界で付加価値をつけた商品が支持を得ていると感じます。 どうやって効率上げる? 競合する部署がない場合でも、他社の同様の部署と比較することで、効率化や高品質化のヒントを得ることができます。業務フローの見直しや自動化ツールの導入は、作業の効率を向上させる効果があります。これによりコスト削減や迅速な対応が可能となります。サポート体制やコミュニケーションの質の向上によって、スタッフ間の満足度を高めることも有効です。場合に応じて、フレキシブルな対応ができるようにすることも検討が必要です。 どの技術を使う? さらに、業務スキルの向上を図ることで高品質化を目指すことができます。また、AIやRPAなどの知識を身につけ、それらを活用することで効率化が可能になります。フレームワークを活用できる場面では積極的に試み、どのフレームワークを使うべきかに関しても多くの選択肢を持てるようにします。

データ・アナリティクス入門

仮説と比較で未来を拓く

仮説の組み立て方は? 仮説を立てるための考え方について、業務に取り入れていきたい点をまとめました。まず、「分析とは比較」であるという点を意識し、比較対象を設けることで、他者にも分かりやすい分析を目指します。また、問題解決の仮説を立てる際には、What(問題は何か)、Where(どこに問題があるか)、Why(なぜ問題が発生するか)、How(どのように対処すべきか)の4つのプロセスを順に追うことで、解決策を推進していきたいと考えています。さらに、常識を疑い、新たな情報と組み合わせながら発想を止めず、創造的な仮説に肉付けを加える方法も取り入れていく予定です。 フレームワークの活用は? また、動画学習で触れたフレームワークも業務に積極的に取り入れることで、より実践的なアプローチが可能になると考えています。 毎月の数値分析法は? 具体的な取り組みとして、まずは毎月の数値分析に注力します。解約数やサービスの利用状況に下落傾向が見られた場合、商品やサービス自体に問題があるのか、利用顧客の属性に原因があるのかを、対前年比に加えて他年度や学年、属性別といった複数の比較軸で検証し、どこにギャップが生じているのかを明確にしていきます。 WEB数値の変化は? 次にWEB数値の分析にも力を入れます。今後のWEBサービスの定期的なリリースに合わせて現在の数値を把握し、増加する数値が示す傾向を基に、即時に対策を検討できる体制を整えたいと思います。 資格取得で成長は? 数値に対する意識を継続して高めるため、分析関連の資格取得も視野に入れ、さらなるスキルアップを図っていくつもりです。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

戦略思考入門

視座を高める!フレームワーク活用術

経緯と意見をどう文章化する? 実践演習では、経緯や意見が文章化されているため、より俯瞰的に考えやすくなったと感じました。リアルな状況ではなかなか難しいことです。 視座を高く保つ重要性 まず、視座を高く持ち、全体的に見て価値が生み出せるかを考えることが重要です。また、他の人の意見を聞き、抜け漏れなく情報を整理すること。そして、情報整理にはどれかのフレームワークを活用することが大切です。この3点は普段意識が薄れてしまうことがあるので、これからは意識的に取り入れ、業務の中で自然に活用できるようにしていきたいと思います。 フレームワークをどう使うべきか? 私の所属するグループでは、「フレームワークを活用しろ」という指示が度々あります。しかし、よくある問題として、前後の情報の繋がりもなく、フォーマットを埋めただけで満足してしまうことがあります。今回の学習で、フレームワークの使用目的や、整理された情報をどう繋げるのかを学んだため、まずは基本の3Cに立ち返って取り組んでいきたいと思います。 不足情報はどう補う? 新規事業領域に携わっている特性上、市場形成が未成熟だったり、自社が初めて参入を検討する領域であったりするため、情報蓄積が不足しています。まずは現在持っている市場環境や競合、見込み顧客へのヒアリング結果を集約し、それを3CとSWOTのフレームワークに当てはめて、不足している分析を整理しようと思います。整理した内容については、メンバーと共有し、過不足を確認した上で、現在の事業計画と比較。根拠の薄い要素や計画に修正が必要な点を洗い出して進めていこうと思います。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

戦略思考入門

業務集約で実現した驚きのコスト削減

市場と戦略は合致? スケールメリットといったビジネス戦略の定石を用いる場合、自社でそれが効果的に機能するかを正しく分析することが重要です。戦略を決定する際には次の段階を踏むことが大切です。まず、市場と自社の状況を分析し、自社が置かれている環境を正確に理解します。次に、定石となるビジネスのメリットやデメリットを検証し、比較します。最後に、効果が見込めると判断できたら実行に移ります。 業務集約の効果は? 自部署の業務では、100以上の拠点の業務を1拠点で代行するという形で集約しています。この業務集約は、製造業とは逆向きのスケールメリットを示していると考えられます。例えば、各拠点で個別に行っていた事務作業を1か所に集約することで重複作業を省き、コストダウンを実現しています。また、特定のメンバーで業務を集約することで習熟度が向上し、更なるコスト削減が可能になっています。さらに、AIや自動化技術を導入することで業務効率を高め、さらなるコストダウンが促進されています。 収益拡大の鍵は? ここで得たノウハウをしっかり蓄積し、それをコアコンピタンスとして外部収益の獲得につなげることを目指しています。現在進めている自社内の業務集約・効率化については、さらなる集約可能な工数を探求し、高品質化につなげていくことが求められます。また、外部収益獲得に向けてはターゲットとなる顧客層を明確にし、受託可能な業務範囲を想定して、必要な技術に関する知識を得るために注意を払うことが大切です。ターゲットを明確にし深掘りしていくことが、コアコンピタンスの形成に繋がるでしょう。

アカウンティング入門

数字の裏側に隠された学び

売上と営業利益はどう? 売上高は企業の事業規模を示す指標であり、数字が大きいほど事業の規模が広いと理解できます。また、営業利益までの項目は本業における収益と費用を反映しており、本業でどれだけの利益を上げているかを把握できることがわかります。 経常利益はどう捉える? 経常利益は、主に財務活動に起因する本業外の収益や費用を含み、継続的な利益獲得の見込みを判断するための重要な指標となります。それ以降の項目では、税金等調整前当期純利益、当期純利益、親会社株主に帰属する当期純利益といった形で、最終的な利益状況が表現されています。 P/Lの見方は? P/Lを読み解く際には、まず売上高、営業利益、経常利益、当期純利益といった大きな数字に注目し、事業全体の概況を把握することが基本です。さらに、各項目の推移や数値の比較・対比を行うことで、傾向の変化や大きな相違点を見出すことが重要です。 競合との違いは? 現在のプロジェクトでは、競合他社と自社との比較・対比分析にP/Lを活用したいと考えています。特に、競合の過去数年にわたるPLの傾向を分析し、どの項目に費用をかけて利益を生み出しているかを抽出することで、自社との違いを明確にしたいと考えています。 効率はどう高める? また、5月末に予定している社内プロジェクトの中間報告会に向け、Q2の情報を盛り込んだ報告内容を準備中です。このため、分析は自分一人で進めるのではなく、ChatGPTやCopilotといったツールを活用し、業務効率を高めながら取り組む方法を模索しています。

データ・アナリティクス入門

振り返りに潜む学びのエッセンス

フレームワークはどう活かす? 3Cや4Pなどのフレームワークを活用して、問題を細分化することで仮説を立てやすくなります。検討事項を分解することで、具体的かつ論理的な課題設定が可能になり、全体像が明確になります。 データ分析は何故重要? 既存のデータと新たに収集するデータを組み合わせ、多角的に分析を進めることが重要です。手持ちのデータをどのような視点で再分析するか工夫するとともに、公開されている一般データも活用して、消費者の行動傾向などの研究に取り組むと良いでしょう。さらに、必要な詳細データを得るために、広範な集団の傾向を把握できるアンケートや、特定の対象に対して深掘りするインタビューといった方法を、ケースバイケースで使い分けることで、既存データを補完し、分析の精度を高めることができます。 仮説はどう検証する? 仮説を立てる際には、複数の仮説を同時に設定し、それぞれの網羅性を持たせることが大切です。何気なく仮説を設定するのではなく、比較の指標や対象を明確にし、具体的な意図を持って検討することで、説得力のある仮説が構築できるでしょう。 なぜ仮説策定する? 仮説を策定する理由としては、検討マインドや説得力の向上、関心および問題意識の深化、意思決定のスピードアップ、そして行動の精度向上が挙げられます。普段の業務でも仮説構築は行われていますが、フレームワークを意識し、何を比較すべきか、対象は誰か、どのように情報を収集するかを十分に検討することで、より総合的で優れたデータ分析体制を整えることができます。

「業務 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right