戦略思考入門

戦略思考で解く!目標達成の秘訣

戦略思考とは何が必要? 戦略思考について、まず①目標を明確にし、②その目標を最短・最速で達成する手段を選定して行動に落とし込むことが重要であると理解しました。この考え方は、日常業務から戦略立案まで、あらゆる仕事で不可欠です。 目標設定で注意すべき点は? まず、①の目標設定では、上司や顧客の期待する目標を具体化し、言葉で説明することが求められます。次に、②の手段選定では、優先順位を決めた上で、時間や費用、労力を考慮しながら進めます。また、③では、多くの解決手段から②の基準やその他の基準も考慮して比較し、最適な手段を選定します。 目標の明確化にどう取り組む? 私は特に①の目標設定の段階で、疑問点があっても深く考えずにぼんやりと目標を決めることがあると自覚しています。そのため、目標を明確に言語化し、自分の取り組みを論理的なストーリーとして説明できるようにしたいと考えています。 戦略思考をどこで活用する? 私たちの会社では、全社の理想像を具体化し、その到達に向けた戦略を立案する場面で、戦略思考が役立っています。また、自身の業務においても、調査業務や研究の方針決定でこの思考が有用です。 戦略思考で業務効率をどう改善? 日常業務では、まず自分で考えられる手段を増やし、その中から最適なものを選ぶことから始めたいと考えています。さらに、自分の業務に限らず、進捗が遅れたり成果がなかなか出ない研究チームを支援する際にも、戦略思考を活用したいと思います。具体的には、目標を設定し、最短で理想の姿に近づくための手段・方法を検討します。そして、チームリーダーや他のメンバーと協力し、アイデアやチームの課題について意見を集め、複数の手段を並行して選定していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

データ・アナリティクス入門

ロジックツリーで分析力がアップしたWEEK2の成果

Whatの重要性とは? 問題解決のステップにおける「What」の重要性として、「あるべき姿と現状を埋めるギャップ」を意識することが挙げられます。ここでも、正しい状態(ありたい姿)と現状の「比較」が必要であることを学びました。 ロジックツリーの活用は? 問題の明確化・特定の段階で活用できるフレームワークとして、層別分解と変数分解があります。特に変数分解の観点でMECEを考えることは、要素の抜け漏れが少なくなる可能性が大いに期待できると感じました。 また、ロジックツリーのコツ・留意点として、「感度の良い切り口をたくさん持っておく」という点が重要です。業界や会社ごとにキーとなる要素があるため、その観点をロジックツリーに組み込めるよう、日ごろから情報収集に努める必要があります。 分析スキルをどう向上させる? 分析を行う際、目の前の情報に飛びついて、初めから原因を勝手に予想してしまい、本質を捉えきれていない分析を行うことが度々ありました。面倒くさがって「What」を適当にしてしまうこともありましたが、分析は「What」と「Where」にこそ時間をかけて問題を特定すべきだと感じました。しかし、「What」を考えるにあたって、まず何をMECEを意識して分解するかが重要になります。自身の仕事においても、まず「What」「Where」のステップのクオリティを上げられるように努めていきたいです。 学びを実務にどう生かす? WEEK2で学んだことの共有やロジックツリーのフレームワークを活かせる業務の選定、過去のキャンペーンを取り上げて、講義と並行して学んだことをアウトプットできるような分析の場を設けることにも取り組みます。講義終了後、チームに共有します。

マーケティング入門

ヒット商品を生むための要件解析

ヒット商品を生むには? 商品がヒットするためには、多くの要素が絡み合う必要があると感じました。商品を生み出すこと自体は比較的容易ですが、ヒット商品に育てるのは簡単ではありません。まず、競合と比較して自社の強みが発揮できている分野かどうかが重要です。次に、ネーミングで商品をアピールし、親しみやすさを感じさせることが求められます。また、顧客の真のニーズを捉えているかどうか、つまりカスタマージャーニーを考慮し、単なるウォンツではなくニーズを理解することが大切です。顧客が支払ってでも解消したい不便(ペイン)を、利益(ゲイン)に昇華させることが求められます。 BPOとBPRの重要性 業務プロセスのアウトソーシング(BPO)や業務改革(BPR)も、クライアントのペインポイントを見つけ、それをゲインポイントに昇華させることが求められる事業だと感じます。特に、将来的に外部収益を伸ばしたい分野ではもちろん、現在の自社内の業務移管においてもこの視点が重要です。何がペインポイントなのかを追求し、それをゲインポイントに変換する方法を見つけ、実現につなげることが大切です。 効率化にどう取り組む? ステークホルダーが業務移管やBPOを希望する業務には、必ずペインポイントが存在すると思われます。(面倒なことや時間がかかること、コア業務でないから外部に委託したいなど)AIや自動化を用いた業務効率化がゲインポイントとなるのか、それとも業務フロー内に決定的なペインポイントがある場合を想定する必要があるでしょう。ただし、単純に工数の圧縮を目的にするのではなく、真のペインポイントを見つけ、それをゲインポイントとして昇華させる視点を持って、日々の業務に取り組むことが求められます。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

リーダーシップ・キャリアビジョン入門

変化を楽しむリーダーの軌跡

リーダーシップはどう? 現在の職場は比較的若いメンバーが多いため、日常の業務推進においてどのようにリーダーシップを発揮するかが課題となっています。これまで、指示型から支援型、参加型、達成指向型へと段階的にリードしていこうと試みてきましたが、各アプローチだけでは彼らのニーズを十分に補うことができないと感じています。そこで、どの仕事をどのメンバーに委ねるかを慎重に検討し、目標に対する道筋を明確に共有することで、メンバーが自発的に動ける環境づくりを期待しています。 マネジメントの課題は? また、将来的にマネジメントを担うメンバーに対しては、これまで動機づけに重きを置いた達成指向型だけでなく、抱えている不安に寄り添う支援型や一部指示型の手法も取り入れる必要があると考えています。どのリーダーシップの型にも固執せず、業務の内容や相手の状況をしっかりと把握した上で、ゴールに向かって導く姿勢を意識していきたいです。 実行ポイントは? 具体的には、以下の点を重視して取り組みます。 ① 任せる業務について、各メンバーが自立して遂行できるか、能力や経験が十分であるかなど、状態や状況を正確に見極める。 ② 目的を共有することで、メンバーの理解度や、業務達成に向けた具体的な道筋が描けているか、不安がないかを確認する。 ③ 理解度に応じて、業務の進め方(抽象的または具体的な指示の内容や確認のタイミング)を柔軟に調整し、結果として指示型、支援型、達成指向型のリーダーシップをバランスよく発揮する 成長環境は? 以上の取り組みにより、メンバーが持つ潜在能力を最大限に引き出し、自立して業務に取り組める環境作りを進めていきたいと考えています。

アカウンティング入門

伝統×WEB!決算数字で読み解く現実

会社の収益は見えるの? 会社のビジネス内容から、損益計算書や貸借対照表の数値を予測することが可能です。予測と実際の数字との差異を知ることで、その会社のビジネスの特徴、すなわちメリットやデメリットを理解する手がかりになります。 航空事例は何を示す? 今回のケースでは、ある航空会社が固定資産として旅客機を購入する際、何年で償却するかや、稼働率、メンテナンス費用など、どの項目を検討してどの程度の収益が見込まれているのかに興味を持ちました。自分が働くモノづくりの現場でも同様の視点が当てはまると感じています。また、近年増加しているWeb関連企業とはビジネス体質が異なるため、収益に対する考え方も違うと考えます。この点について、グループワークの中で議論してみたいと思います。 自社分析はどう進む? ① 自社のP/LやB/Sシートを確認し、自分なりに分析します。同業他社との比較も行い、どの部分が異なるのか、なぜ違うのかについて考察します。さらに、伝統的な企業と近年の企業の違いを比べ、その知見を自分の業務に活かす方法を模索します。 意見交換で何が得られる? ② 半期や通期の決算書を確認し、自分なりの見解をまとめた上で、グループのメンバーと意見交換を行います。新聞やニュースなどの情報に触れた際、その内容をWebで検索し深掘りすることで、更なる理解を深めます。 他社との違いは? 自社の半期・通期決算発表を受け、会社の現状を自分なりに考えるとともに、他社の情報にも関心を持ち、なぜ他社が強いのか、または厳しい状況にあるのかを考察することが重要です。関連する書籍にも手を伸ばしてみると、より広い視野でビジネスの理解が深まるでしょう。

データ・アナリティクス入門

ロジックツリーで見える問題解決の新視点

問題の本質はどこ? 問題解決には2つの種類があります。1つは正しい状態に戻すための問題解決であり、もう1つは目標に到達するための問題解決です。これらの解決を図るためには、まず問題の所在を明確にし、具体的な問題箇所を特定することが必要です。自分が「これが原因・問題だろう」と考えていても、予期せぬ原因や見逃している問題が存在することがあります。これを防ぐためにロジックツリーを用いることが有効です。 影響はどう見える? また、原因や問題が業務や経営方針にどの程度の影響を及ぼしているのか、ライバルと比較して適切な条件になっているのか、全体の進行の中で重視すべき事象なのか、といった点も考慮に入れなければなりません。 説明は伝わる? 業務上、特定のスタッフに業務負荷が偏ってしまうといった問題を解決する際、原因をなんとなく感覚的に見つけ、「これが原因だろうからこうすれば良いだろう」と進めてきました。しかし、それを周囲に説明し納得してもらい、動いてもらうためには、今回学んだロジックツリーを活用することが効果的であると感じました。 戦略はどこに? 現在注目される訪日旅行において、どのエリアを強化するのか、どのような戦略を取るべきかを考える際、現状やこれまでの訪日旅行のトレンドや傾向についても考慮したいと考えます。 改善策は何だ? 業務改善においては、ロジックツリーを活用して、問題の本当の原因を他の管理職と共に追求します。その上で、人員を増やすべきか、業務フローそのものの効率化を図るべきかについて議論します。また、今期の方針として、訪日旅行に関するどのようなデータが必要かを調査し、その中から必要な情報を選別する予定です。

データ・アナリティクス入門

データ分析で見分ける成功の鍵

データ分析で比較はなぜ重要? データ分析の基本は「比較」であることを学びました。しかし、ただ単に比較すれば良いというわけではありません。分析の目的に応じて比較の軸が異なるため、その目的を明確にすることが重要です。さらに、データ分析の結果を報告する際には、見せ方を工夫することも大切です。比率を見たいのか、推移を見たいのかなど、定量データに応じた適切な見せ方を検討する必要があります。 飛行機の生存能力をどう改善? 動画の中で、飛行機の生存能力を上げるための改善点を考えるという課題がありました。初めは「欠損している部分」を改善するべきだと思いましたが、分析の目的を考えると、「欠損していない部分」を補強する方が生存能力が上がるという解説を見て納得しました。 業務でのデータ分析の課題とは? 日々の業務でも、お客様がデータ分析をしたいと言いつつ、現状の把握だけで終わってしまうケースが多々あります。そこで、データ分析の基本として、目的の明確化と比較の重要性を伝えていきたいと思います。たとえば、実績だけの数値を並べているケースでは、その数値が良いのか悪いのか判断できず、その後のアクションが不明瞭になっているお客様が多くいます。このような場合には、具体的な提案を行いたいです。 学びを実践するプロセスが大事? 学んだことを実践し、アウトプットすることで、その結果が良かったのか、改善の余地があるのかを言語化することも大切です。振り返りを必ず行い、学んだことを整理し自分の中に落とし込むプロセスを欠かさないようにします。グループワークや講義の中では、自分ごととして捉えることを意識し、積極的に考え、発言するように心がけています。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

「業務 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right