デザイン思考入門

SCAMPERで切り拓く新発想

結論は先走り? 業務上、課題を定義した後に改善のためのアイデア出し手法を振り返ったとき、ブレインストーミングやKJ法は実施していましたが、初めから結論を想定している印象があり、本来の自由な発想法とは異なっていたと感じました。 SCAMPER法は有効? そのような中、アイデアがなかなか浮かばない状況でSCAMPER法というフレームワークを知り、非常に使いやすいと感じました。特に、業務で「依頼しているのに対応してくれない」という課題に対して、これまでS、C、M、E、Rの視点では比較的アイデアが出ていた一方で、AとPの視点ではなかなかアイデアが得られなかったため、SCAMPER法の導入が有効であると考えています。 実践は難しかった? 実際にSCAMPER法を実践してみると、似たような定義から同じアイデアが生まれてしまい、特にAとP、CとR、MとEの違いが曖昧になってしまい、どのようにアイデアを出すか苦労しました。講義だけでは違いが十分に理解できなかったため、別途調べた結果、以下のように整理することでアイデア出しがしやすくなりました。 AとPの違いは? ■AとPの違いについて Adapt(応用する)は、他の分野や状況で使われているアイデアや技術、要素を取り入れ、自身の課題や製品に適用させるという視点です。つまり、他のものを取り入れて現状のアイデアを改善することを目指します。一方、Put to other uses(転用する)は、既存のアイデアやものを全く異なる目的や用途に使えないかと考える発想法であり、今のアイデアを別の使い方に転換させる点が異なります。 CとRは何が違う? ■CとRの違いについて Combine(組み合わせる)は、2つ以上のアイデアや要素を組み合わせて新たなアイデアを生み出す方法です。対して、Reverse, Rearrange(再構成する)は、順番や役割、位置、視点などを反転させることで、これまでと異なる形のアイデアを導き出す考え方です。 MとEはどう違う? ■MとEの違いについて Modify(修正する)は、現在のアイデアや製品、要素に対して拡大、縮小、協調、または弱化といった変化を加え、形や意味、印象を変更する方法です。これに対し、Eliminate(そぎ落とす)は、不要なものを取り除くことで、シンプルかつ斬新な価値を見出す手法となります。 様々な手法は? また、アイデア出しの手法としては、ブレインストーミングやKJ法、シナリオ法、ペーパープロトタイピングなどが挙げられます。ブレインストーミングでは、質より量を優先し、他者の意見を批判せず自由に発想することが重視され、出たアイデアは後で関連性の高いもの同士でグループ化します。KJ法は、ブレインストーミングの結果を整理・分析する手法で、類似するアイデアをラベル付けし、関係性を図解化することで、重要な情報を抽出します。シナリオ法では、ユーザーの行動をストーリーとして描き、各シーンごとの感情や潜在的な価値を分析します。一方、ペーパープロトタイピングは、デザインのアイデアを実際に書き出し、プロトタイプとして形にする方法です。 独自性はどう? 製品コンセプトの策定においては、競合他社にはない自社ならではの独自性を打ち出すバリュープロポジションを明確にすることが重要です。そのため、市場調査を行いターゲットを確定し、ターゲットの課題を明らかにして、解決策を検討しながら関連するキーワードを整理するステップを踏む必要があります。 大切な点は? 最後に、アイデア出しで大切な点は、量を出すこと、視覚的な刺激を与えること、多様なチームで取り組むことだと実感しています。

クリティカルシンキング入門

実案で磨く、問いと提案の極意

マック事例の魅力は? マックの経営改善の事例では、飲食店が顧客にどのような仕掛けを施しているのか、そのプロセスを学べたことが大きな収穫でした。本質的な課題に迫る問いや考え方を理解するため、一連の流れを整理し、復習することが理解度をさらに高めるのに役立ちました。 顧客事例の意味は? 自身の業務では、直接売上や顧客へのアプローチ、営業活動に関わっていないため、講義での現実の顧客事例の理解は非常に貴重でした。もしも最前線で営業を担当しているなら、提供する製品を具現化するイメージを持ち、ペルソナ設定やデジタルマーケティングの手法を活用しながら、プレゼンテーションやセールストーク、販売手法、アフターサービスを体系的にまとめ、各顧客に合わせた販売戦略を確立することになるでしょう。 自業応用のヒントは? また、飲食店経営の事例からは、自分の業務にどのように応用できるかをイメージすることが大切だと感じました。課題の記載にはピラミッドストラクチャーやMECEの考え方を用い、時間軸、優先度、業務効率を考慮することで、組織内の意思決定に役立てる意識を持つようにしています。 本質課題の意義は? 「本質的な課題」とは、形式的な課題ではなく、物事の核となる部分を捉え、整理・分解することから解決策を導くアプローチです。課題を提示する際、核心を押さえた内容であっても、相手によっては関心が薄いことがあるため、視点を変える工夫が求められます。これまで、理解が得られなかった場合は無理に誘導せずに終わらせていた点を反省し、今後は相手の視点に立って一工夫を加えるよう努めます。 データ運用の疑問は? また、業務においては大量のデータを扱う中で、定型的なグラフを使った比較がルーティン化してしまっています。例えば、一部の部門ではBIツールとしてタブローが利用されていますが、他部門では別のサーバーのデータが正確とされ、導入に慎重な面もあります。今後は、現状の前提を見直し、利用可能な範囲を点検していく必要を感じています。 問い設定はどう? さらに、AI時代においては「問いの設定力」が極めて重要なスキルとなります。期待する答えを引き出すための問いを、行動経済学や心理学を加味しながら設定するには、実践と訓練が欠かせません。自らの得意分野とは異なる領域に挑むことで、問いの立て方の精度を高め、スキル向上を目指しています。 提案準備の工夫は? 業務企画の現場では、学んだ内容をプレゼンテーションに活かし、説得力のある提案を行えるよう努めています。同時に、データ利活用における課題についても、データ量の大きさやシステム構築の面から自らの知識を深め、SQLのトレーニングを通じて効率的なデータ処理を実現するための準備を進めています。 思考整理のポイント? クリティカルシンキングに関しては、Week1で学んだ基礎を基に、自分の考えやアイデアを整理して伝える力の強化を目指しています。マインドマップやピラミッドストラクチャー、MECEの手法を活用し、視点を変えて相手にわかりやすい説明を心がけ、試行錯誤を重ねながら整理力を向上させています。 言語化の成果は? また、日々のトレーニングとして、1週間で400文字程度の言語化を行っています。日経のアプリを活用し、1日2回、300文字程度で議題に関して知識の範囲内で整理し素早く書く練習を継続しています。これにより、書いた内容の振り返りと分析から課題を抽出し、より簡潔に伝える力の向上を目指しています。

データ・アナリティクス入門

問題解決の力を引き出すステップ学び

問題解決の基礎ステップとは? 問題解決のプロセスとして「What」「Where」「Why」「How」のステップがあることを学びました。 最初のステップである「What:問題の特定」では、定量情報を用いて"あるべき姿"と"現状"を比較し、"ギャップ"を明らかにすることが肝要です。このステップを思いつきや決め打ち、闇雲に行うと、以降の工程が無駄になるリスクがあります。 ロジックツリーの活用法は? 次のステップである「Where:問題箇所の絞り込み」では、「What」のステップで特定した問題を起点として、ロジックツリーというフレームワークを用いてMECEに要素を分解します。全体を俯瞰し、問題に対する影響度から見るべき範囲と見なくてもよい範囲を絞り込み、分析の優先順位を決めることが重要です。ここでも思いつきや決め打ち、闇雲に取り組まないことが大切です。 経営資源は有限であるため、短期的な観点ではそれらを前提や制約条件として考慮し、「What」や「Where」のステップを効率的に進めることができます。ただし、経営資源は変化するものであり、中長期の視点で見る際には前提や制約条件として考慮すると網羅性に欠け、全体像を把握できなくなるリスクがあります。 また、「What」「Where」のいずれのステップにおいても、複数の切り口を持ち、複数の仮説を立ててデータにあたることが重要です。切り口の感度や仮説の筋の良さが問題解決の精度に影響を及ぼしますが、これは「どれだけ現場のことを理解しているか」と「どれだけ高い視座と広い視野を持てるか」に依存すると感じました。 問題解決に活かすために これまでの自分の問題解決のアプローチは短期的かつ思いつきや決め打ちが多く、時間的制約という思い込みの中で深く考えることができていなかったと気付きました。これでは、切り口の感度や仮説の筋の良さが磨かれるはずもありません。 次期中期事業計画の策定時に今回の学びを活かします。現中計の振り返りをふまえて次期中計を策定する際、より良い未来に向けて「なぜその目標を設定するのか」「なぜそれを独自性(強み)と考えたのか」「なぜそれをやる or やらないと考えたのか」「現経営資源を考慮した際、なぜその方針が妥当なのか」を分析結果を用いて説得力を持たせたいと考えます。「目指すべき目標を明確にする」「独自性(強み)を認識する」「やることとやらないことを区別する」「目標への道のりの妥当性を示す」、そして戦略の構造化を図る。 関係者との協力をどのように? 周囲の協力を得つつ、関係者と一緒に「高い視座と広い視野」を持ち、三現主義の考え方に基づいて、目的に適したフレームワークを使いながら、一つ一つしっかりと考え進めていきたいと思います。そのために、今まで以上に上位層や組織の枠を超えたコミュニケーションを増やし、今回学んだロジックツリーを戦略の構造化で使うべく、日々の業務で活用し自分のものとしていきたいと思います。 上位層との1on1を通して「高い視座と広い視野」を獲得し、メンバーとの1on1では問題解決のプロセスを意識し、ロジックツリーの利用を促進し「全員が使えるフレームワーク」として根付かせていきます。

データ・アナリティクス入門

データ分析で見つける新たな発見の旅

データ分析における比較の大切さとは? 今週の学習を通じて、データ分析における「比較」の重要性を再認識しました。「分析は比較なり」という表現が示すように、何か基準となるものと比較することによって初めて、変化や差異を見つけることができます。そして、その変化がなぜ起きたのか、差異が生じた原因は何なのかを検証することが、データ分析の核心と言えるでしょう。しかし、漠然とデータを比較するだけでは有意義な分析は不可能です。「何のために分析するのか?」という目的を明確にすることが、データ分析の出発点となります。 明確な目的が仮説を生む? 目的が明確になれば、自然と仮説も立てやすくなります。例えば、「収入を向上させたい」という目的なら、「初診患者の獲得が収入増に寄与するのではないか」といった仮説が考えられます。このように、目的を定め、仮説を立てた上で、それを検証するためにデータを比較・分析していくプロセスが、効果的な意思決定に結びつくことを学びました。 日常業務へのデータ活用は可能か? また、今週身につけた知識は日常業務にも直結すると感じています。特に、来院患者の属性や疾病傾向、売上などのデータは、毎月作成する月次報告に役立ちそうです。これらのデータを活用することで、科別に詳細な分析が可能になり、変化を明確に把握できます。例えば、ある科で患者数が先月より大幅に増えた場合、その原因を詳しく調査することで、効果的な集患対策を講じることができます。また、売上が伸び悩む科については、患者の属性や傾向を検討することで改善策を見つける手がかりになります。さらに、過去のデータからトレンドを分析することも重要で、一定のパターンを把握することで、未来の需要を予測し、適切な経営戦略を策定できます。 行動計画はどのように進める? 今後の行動計画として、まず明確な目的と課題を確認・設定することから始めます。これはデータ分析の方向性を決める大切な部分で、ここが曖昧だと分析が迷走してしまいがちなので、慎重に検討したいと思います。次に、目的達成に必要な要素(データ)を見極め、その収集と加工に努めます。必要なデータをどこから収集し、どのように加工すれば効果的に分析できるのかを考え、具体的な計画を立てて実行します。 結果をどう効果的に共有する? データがまとまった段階で、自分なりの課題解決に向けた仮説を立てます。この仮説は、データ分析の結果を解釈し、具体的な行動につなげるための指針となります。これらの行動計画を実行する際には、常に「何のために分析するのか」という目的を意識し続けることが大切です。データ分析はあくまで手段であり、目的は課題解決や意思決定の支援であることを忘れないようにしたいと思います。 また、データ分析が自己満足で終わらないよう、他者に理解され活用される形で結果を提供することも重要です。そのためには、視覚的情報を用いて分かりやすい資料を作成する努力を続けていきます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

データ・アナリティクス入門

分解の先に迫る成功のヒント

売上分解のポイントは? ライブ授業で、伝統工芸品の売上低下の原因を分析するワークに参加しました。その際、思いついた要因に飛びついてしまうと誤った結論に至ることを身をもって実感しました。事例を読むと、さまざまな要因が一気に頭に浮かびますが、まずは「売上」をどのように分解し、各要素で問題を明確にすることが大切です。具体的には、問題の本質をWhatの視点で整理し、Whereで該当箇所を特定し、Whyで原因を分析、Howで解決策を立案するというステップを忠実に踏む必要性を感じました。 原因検討の視点は? また、原因を検討する際には、マクロとミクロ両面からの視点が求められることにも気づきました。普段から外部要因にも興味を持ちつつ、自社の業務や販売プロセスを細かく分解して分析することで、フレームワークの精度を向上させる努力が必要だと実感しました。さらに、実数と率の両方を確認するという基本的なポイントが、自身の分析手法において抜け落ちていたことにも気づかされました。 店舗運営の見直しは? 店舗業務においても同様に、業務を分解しボトルネックを解消する手法を取り入れたいと思います。現在の店舗業務は煩雑で無駄が多いと感じていましたが、ある店舗では人員を削減した結果、業務効率が向上し生産性が上がったという事例を経験しました。この経験から、最適な人員配置を再考し、労働分配率を指標として理想的な店舗運営を模索する必要性を認識しました。 工程分析の進め方は? そのためには、まず店舗の業務内容を細かく分解し、どの工程にボトルネックがあるかを洗い出します。具体的には、各作業にかかる時間や担当人数を数値化し、店舗間で比較を行います。比較指標は、優先順位をつけた上で、フレームワークを活用して要因の検証を行います。検証結果から仮説を立て、それを元に対策を立案することが最大の目的です。対策は、すぐに実行できるものと、長期的に計画的に実施すべきものとに分けて検討します。 環境変化への対応は? 法改正や業界環境の変化といった外部要因に柔軟に対応しつつ、業務効率向上に努めることは簡単ではありません。しかし、業務を数値化し経年変化を追うことで、後からさまざまな要因との関連性を振り返り、分析できると考えています。 実行計画の具体策は? 具体的なアクションプランは以下の通りです。   What:労働分配率が高いという問題を認識する。 ① 業務の洗い出しを今期中に行う(Where)。 ② 問題と考えられる業務を数値化する(今期中に実施)。 ③ 比較指標を立て、要因の検証を行う(今期中)。 ④ 店舗間の比較を来期上期に開始する。 ⑤ 結果を集計し、仮説を立てる作業を来期上期に実施する。 ⑥ 対策を立案するのを来期下期に進める(How)。 以上の手順を踏みながら、各ステップを着実に実行していくことが、問題解決への鍵となると感じています。

クリティカルシンキング入門

実践で見つける学びのヒント

データ分解のポイントは? ■データや数字を分解するとは、まず一手間かけて実際に手を動かし、異なる要素を取り入れながら分解・分類することです。案ずるより生むがやすしという言葉どおり、実際に試してみることで気づきが得られます。また、MECEの考え方を取り入れて漏れや重複を防ぎ、粒度を統一することも重要です。さらに、統計的手法そのものは使わなくとも、正の相関・負の相関や偏りといった結果が分解の過程で明らかになると考えられます。 視覚化の工夫は何? ■データの可視化では、仕事に視覚的な刺激を与える工夫が求められます。最適なグラフや色使いを意識すれば、直感的に内容が把握しやすくなります。グラフ作成においては、意図を誘導するのではなく、客観的な視点と根拠に基づいて、見やすさを重視した作り方が大切です。 各指標の活用法は? 自社の業務では、生産性や品質、お客様の満足度アンケートなど、数字で示せる指標が多数存在します。日常的に取得されるデータは社内ルールに従い取り出し・分析されていますが、KPIに基づかないデータはまだ十分に活用されていません。たとえば、音声データは今後、AIによる分類が進み、感情や品質の判断などに役立つ可能性があると感じています。 視覚情報活用の秘訣は? ■視覚情報を活かすため、直感的に判断しやすい図形のバリエーションを増やそうと考えました。普段はワンパターンになりがちだったため、見直す必要があると反省しています。同様に、先に述べた通り、グラフは客観的でわかりやすいものを作ることが重要です。 異なる視点の効果は? ■実際に手を動かす段階では、定型的な並べ方だけでなく、あえて異なる視点からグラフを作成してみることが大切です。失敗や試行錯誤の過程が次の発見につながるとともに、同じ行動様式によるバイアスやパターン化を排除する助けになります。たとえ時間効率を重視しすぎず、KPI項目に重点を置いた原因分析や仮説の構築に取り組む一方で、KPI以外のデータからも意外な傾向が見えてくるかもしれません。 比較で見える新発見は? また、数値やグラフの比較や傾向を通じて、何も見えてこなかった場合でも、その経験を次への一歩として前向きに受け止めることが大切です。多くのお手本を参考にしながら、状況に応じて複数のグラフバリエーションを試作し、今まで活用できなかった手法を検証する機会を持つことが求められます。 数字伝達の秘訣は? 最後に、数字による主張を客観的に伝えるためには、自分が立てた仮説や意見を偏らず筋道立てて説明する工夫が不可欠です。どれだけ簡潔な説明ができるかを追求しつつ、数字やグラフからどのように伝えるか、どんな言葉を用いるかを直感と経験で磨いていくことが、最終的な課題解決につながると考えます。振り返りや反復練習を通じて、基本を定着させ、一過性では終わらない実践を続けていきたいと思います。

戦略思考入門

利益向上を目指す戦略の新提案

組織目標って何? Week1では、組織のゴール設定について学びました。Week2では、経営者の視点を持ち、戦略的に考える手法を習得しました。Week3では、各種フレームワークを用いて自社と他社の強みを整理し、差別化を図る戦略手法に触れました。Week4では、ゴールに向けてやるべきこととやらないべきことを明確にする選択手法を学び、さらに、単位時間あたりの利益率や顧客の成長性を見極め、企業文化とキャラクターを唯一無二の存在にする考え方を理解しました。 全体利益はどう? そして、Week5では、会社全体の利益率を上げるための考え方を学びました。具体的には、「規模の経済性」、「習熟効果」、「範囲の経済性」を駆使して、会社の利益を追求する方法を学びました。 規模の効果は? まず、規模の経済性についてです。自社製品は受注生産が主で大量生産の感覚はありませんが、10年ほど前から期末に集中しないように取り組んでいます。また、部品を含めた在庫をできるだけ減らす試みも進行中ですが、緊急時の対応(例えば、コロナの影響や故障時)では調達が困難になるリスクもあります。利益率を比較すると海外他社の方が優位であり、自社でも改善が求められていますが、これはグローバルなシェアの高さに起因しているようにも感じられ、改めて組織のゴール設定(Week1)が重要であると考えさせられました. 習熟のコツは? 次に、習熟効果についてです。私の部署の組織戦略の一つに教育強化が掲げられており、「習熟効果」に基づいた考え方が反映されています。取扱説明業務には一定の経験が求められ、新人やベテランともに製品のプロとして期待されています。新人が自信を持って説明できるようになるためには、少なくとも3年の経験が必要です。このため、経験に依存するため、生産性の面で課題があり、社員への精神的負担も大きいのが現状です. 範囲統合はどう? 最後に、範囲の経済性についてです。類似した製品に使用する部品や開発コストを統一し、コスト削減を図っています。使用顧客の視点からも、同じ会社から提供される製品に共通性がある方が使いやすく、販促にもつながります. シェア増はどう? 規模の経済性に関しては、TOVの国内シェア増加がどの程度の変化をもたらしているのか確認し、海外他社と自社の利益率の主要因を事業部に確認する必要があります. 教育見直しは? 習熟効果については、自組織の教育体制を見直し、習熟効果を高めるカリキュラムを作成し、アウトプット型の教育に特化して組織全体の習熟度を向上させる必要があります. 他製品の共有は? 範囲の経済性に関しては、縦割り文化が強いため、開発部が他製品で共有できるものを把握できていません。顧客に近い部署として、他組織で好評な作りや製品を自組織製品に取り入れることでコスト削減につながる提案をすることが重要だと考えています.

データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

データ・アナリティクス入門

データ分析で学ぶ問題解決の極意

データ分析の基本は比較すること? データ分析を行う際、常に重要とされるのは、次の三点の意識です。 まず、分析の基本は比較です。データの意味を正しく理解するためには、異なる要素を比較することが不可欠です。単独の数値だけでは判断が難しく、過去のデータや他の指標と比較して初めて有益な示唆を得られます。 分析の目的をどう明確にする? 次に、分析の目的を明確にすることです。なぜデータを分析するのか、その目的を常に意識することが重要です。目的が不明確だと、必要なデータを見落としたり、無駄な分析を行ったりする恐れがあります。 仮説の整理で見失わないために? 最後に、分析の前に目的と仮説を整理することです。データを集める前に、「何を明らかにしたいのか」「どのような仮説を検証するのか」を整理しておく必要があります。これが曖昧だと、分析の方向性を見失い、効果的な意思決定につながらない可能性があります。 これらのポイントを意識することで、より実践的で価値のあるデータ分析が可能となります。 依頼主の目的をどうヒアリングする? 現在の業務では、データ分析の依頼を受けることが多いですが、依頼主の目的や仮説を確認しないままデータ加工に進むことがあります。さらに、依頼主自身が目的や仮説を明確にできていないケースも少なくありません。その結果、分析が本来の目的に合致せず、期待した価値を生まないデータとなってしまうことがあります。 これらの課題を解決するため、データ分析に着手する前に、依頼の背景や目的、仮説を丁寧にヒアリングし、必要に応じて適切な方向性を示すことを目指します。単なるデータ処理のスキルだけでなく、適切な問いを立て、論理的に考える力が必要です。本講座を通じて、そうしたスキルや思考法を習得し、より価値のあるデータ分析を目指していきます。 継続的な改善が価値を生む? 依頼主の目的や仮説を十分に確認しないまま進むことを防ぐため、以下の行動を実践しています。まず、依頼時のヒアリングを徹底します。「何のための分析か」「どのような意思決定につなげたいのか」を明確にする質問を行います。目的や仮説が曖昧な場合は、具体的な事例を挙げながら整理をサポートします。 次に、仮説の検証を意識したデータ設計を行い、目的・仮説に沿ったデータの選定・加工・分析の方針を明確にします。必要に応じて事前に簡単なデータの傾向を確認し、分析の方向性が適切かを判断します。 最後に、分析結果に適切なメッセージを添えます。「このデータから何が言えるのか」「どのような意思決定に役立つのか」を言語化し、依頼主が結果を適切に解釈できるよう、シンプルで分かりやすい可視化や説明を心がけます。 これらを継続的に実践し、依頼主にとって本当に価値のあるデータ分析を行えるよう努めています。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

アカウンティング入門

数字が映す企業戦略の秘密

企業戦略は何が鍵? 今週の学習で印象に残ったのは、企業のビジネスモデルや戦略がP/LやB/Sといった財務諸表に如実に表れるという点です。これまで財務諸表は経理や専門職が扱うものと考えていましたが、複数社の比較を通じ、数字が企業の意思決定や事業構造を映し出す鏡の役割を果たしていることに気づかされました。 軽やかな利益構造は? たとえば、ある企業はシステム提供型のスケーラブルなビジネスを展開し、インフラや開発費に重きを置いた軽やかなコスト構造を持つため、売上原価比率が低く抑えられています。一方、別の企業は自社でコンテンツを制作・調達することで競争優位を築いており、その結果、売上原価の比率が高く、P/Lから企業が何に価値を置いているかが読み取れました。 資産構成はどう映る? また、B/Sの観点から資産構成を比較すると、ある企業は高額な有形固定資産を多く保有し、長期安定運航を支える重厚な資産構成であるのに対し、別の企業は現金・在庫・システム関連など流動性の高い資産が中心で、柔軟な運営体制を実現していることが数字に表れていました。 数字は何を語る? このように、数字を通して「企業の戦い方」や「どこに強みを置いているか」を読み解ける点は、今までにない気づきでした。アカウンティングがビジネスの理解に直結する力を持つことを実感できた1週間でした。 業務改善の視点は? さらに、B/Sからビジネス構造や戦略を読み取る視点は、社内業務の棚卸しや改善提案の場面で大いに活用できると感じています。従来、請求や検収、支払などの処理業務の改善優先度は、作業量や負荷感といった感覚的な基準で検討していましたが、今後は資産の流動性・固定性に着目することで、業務が財務面に与える影響や重要性をより定量的に把握できると考えています。 改善提案はどう進む? 実際、月次業務の改善会議では、部門ごとに資産の動きや処理負担を整理し、改善優先度を明確に提案する機会が増えると予想しています。また、経理AIサービスの開発支援に携わる中で、各業種の資産構成に応じたレポートやアラート設計を、財務的視点から企画チームに提案するシーンも想定しています。 具体策で未来を問う? そのための具体的アクションとしては、まず自社の主要業務に関わる資産・負債の構造を部門ごとに可視化するマッピング資料を作成します。そして、現場担当者との対話を重ねながら、「この業務がどの財務項目と関係しているか」「流動性の高い資産を扱う業務はどこか」といった視点を共有し、B/Sの構造を共通の改善指標として浸透させていきたいと考えています。

「業務 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right