データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。

戦略思考入門

差別化戦略を考えるヒント

顧客の価値はどう見極める? ターゲットとなる顧客にとって、価値のあるものをしっかりと捉えることが重要です。顧客が魅力を感じなければ、その差別化は意味をなさないからです。また、顧客視点で誰が競合となり得るか、思わぬ業界や業種が競合になる可能性も考慮する必要があります。さらに、実現可能で持続可能な差別化、すなわち他社にすぐ真似されない対策を意識して差別化施策を打ち出すべきです。 営業とマーケティングはどう活かす? 営業においては、顧客が求めているものを把握し、他社の差別化ポイントを考慮しつつ、自社の差別化要素を整理することが求められます。この情報を踏まえた上で日々の営業活動や商談に取り組むことが重要です。マーケティング部門でも、新商品や新サービス・ソリューションを開発する際に、今回学んだ差別化の考え方が役立つ場面がありそうです。 自身の業務にすぐ活かすのは難しいかもしれませんが、自社の商品やサービスを考える際には、顧客にとって価値があるか、他社と比較してどうか(真似されにくいか、既に行われているか、その規模感はどうか)を常に意識する習慣をつけることが大切です。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

データ・アナリティクス入門

分解で見えた解決のヒント

進行中の問題は何? プロジェクトの進行において問題が発生した場合、まずはプロセスをできるだけ詳細に分解し、ボトルネックを見つけ出すことで原因を明確にし、解決策の糸口を探していきたいと考えています。 複数原因はどう整理? 一方で、原因が複数存在する場合には、さまざまな対策案を検討する必要があります。実際の業務ではA/Bテストの実施が少ないかもしれませんが、実施する際には1要素ずつ、できる限り条件を揃えて行うことを心掛けたいと思います。 全体像はどう掴む? また、問題の原因を探索する際には、プロセスを細かく分けることでボトルネックに注目し、問題の全体像を把握するよう努めます。 評価基準は納得? さらに、解決策を検討する場合は、適切な判断基準を設定した上で各案の評価を行います。その際、判断基準の重要性や重み付けについても十分に考慮しながら進めることが重要だと考えています。 A/Bテストはどう実施? A/Bテストについては、条件を一致させた上で1要素ずつ実施するようにし、比較が効果的に行えるよう留意していきたいと思います。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

アカウンティング入門

自ら挑戦!未来を紡ぐ財務シミュレーション

財務諸表の役割はどうなってる? 財務諸表は、事業の状況を定量的に把握するための重要な資料です。基本的な3種類には、P/L(ある期間の収益や利益の状況を表す)、B/S(事業運営に必要な資金の調達方法と使用用途を示す)、C/S(一定期間におけるキャッシュの増減を明らかにする)があり、それぞれ異なる視点から事業の健全性を測ることができます。 プロジェクトの試算はどうする? 現在取り組んでいるプロジェクトにおいては、これらの財務諸表を分析し、将来のシミュレーションを実施できるようになりたいと考えています。現状では上司が試算を行ってくださっているため、今後は自分自身で実施できるようになることを目標としています。 競合比較で見えてくるのは? また、競合との比較を通して自社の資金運用や収益の仕組みを明らかにすることも大切だと感じています。担当プロジェクトでは、競合や自社の状況を分析する際に、グループメンバーに任せるのではなく、自ら積極的に手を挙げる姿勢を持ち、業務時間の確保のためにその他の業務も先回りして段取りを整えるよう努めています。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

アカウンティング入門

P/LとB/Sで学ぶ実践的経営分析

比較モデルの新たな発見とは? 実在の企業をモデルにした比較は、これまでのカフェ比較に比べて非常にリアリティがあり、面白く取り組むことができました。ただ、P/L(損益計算書)とB/S(貸借対照表)を別々の企業で行うのではなく、同じ企業のP/LとB/Sを同時に見ることで何か傾向を学べれば、より良かったと思います。 P/L活用の具体的方法は? 直近では、自社全体での活用は大きすぎるため、まずは自部門のP/Lを閲覧する際に今回の学びを活かしていきたいです。自部門のP/Lは管理会計であり、財務会計ではないので、今回学習したP/Lと構造が異なります。そこで、一度学習したP/Lに合うように成型し、数字の管理に慣れていきたいと考えています。 数字管理の重要性とは? 現在、私はまだP/Lを直接管理したり、それを基に分析を行ったり、分析を立案する立場にはいませんが、いつでもその業務に携われるように数字の管理に慣れておくことが大切です。他部門と比較して何が違うのかを分析し、必要な改善箇所と具体的な対策を立案していきたいと思います。

データ・アナリティクス入門

反論と仮説で広がる新視点

今週の経験に学ぶ? 私は人事部でDXに取り組み、最近はデータ分析を担当しています。今週も経営層からのご指摘があり、改めて反省する機会となりました。レポートの流れに特殊な点がある中で、社会人としての危機感を常に感じながら業務に取り組んでいます。 仮説の意義を考える? 指示内容は、様々な切り口で他社の人事データと比較することと、仮説を複数立てることでした。当初はどちらかに偏り、特に仮説に引っ張られすぎて決め打ちしてしまったため、網羅性が欠けた点がありました。しかし、教材のWEEK04を学ぶ中で、両方の重要性に気づくことができました。 具体策は何だろう? 具体的には、次の3点を意識することにしました。まず、決め打ちによる思考の狭まりを防ぐために、自分自身で反論や反証を考える習慣をつけます。次に、同じプロジェクトのメンバーにも仮説を立てる意義や、仮説作成のポイントを共有し、ディスカッションの時間を確保するようにします。そして、日常生活の中でもフレームワーク(3Cや4P)を意識して活用し、視野が広がるよう努めます。

データ・アナリティクス入門

効率的な資料作成で業務改善!

分析を効果的にする方法は? 分析の本質は比較にあります。具体的な要素を整理し、比較対象や基準を設けて、きちんと比較することが重要です。また、条件がそろっていない場合には想像力を働かせて補完することも必要です。 資料作成の時間短縮には? 目的を理解して分析を行うことが大切です。販売計画の部署にいる後輩たちに対して、分析の基本を踏まえたアドバイスをします。例えば、資料にグラフをたくさん載せて資料作成に時間がかかると嘆いている後輩の資料をチェックし、本来の目的は何か、仮説は何かを一つ一つ確認していくことです。 カイゼンプロジェクトの課題解決策 現在進行中のカイゼンプロジェクトでは、「資料作成に時間がかかりすぎている」「この資料作成は本当に必要か」といった課題があります。これらの問題を解決する方法の一つとして、目的をしっかり確認し、仮説を明確にしてから資料を作成するというアプローチを取り入れることが有効です。目的を明確にした上で、仮説を立て、必要な資料を作成する重要性を後輩たちに伝えることが必要です。

クリティカルシンキング入門

資料作成のプロが語る効率向上のコツ

資料作成の工夫は何を意識する? 視覚(資料)を使って相手の理解を促進させるには、読み手の立場に立ち、字体やフォント、色や全体のレイアウトなど細部まで考えることが重要です。また、リード文やグラフを用いる際はシンプルかつ強調できるように情報量の足し算と引き算を意識し、内容により適切なグラフを使用することが求められます。 学びを業務にどう活かす? 社外取引先向けの資料を作成する機会が比較的多いため、次回作成時からこの学びを活用したいと思います。また、社内資料の作成においても社外向けのメリハリを意識することで、今回の学びを自身の業務で活用できるよう訓練したいです。 新しい習慣をどう築く? これまでは慣れや自分の感覚、作成に充てる時間によって主観的に資料を作成していました。しかし、今後は読み手の読みやすさや印象を意識し、作成の過程でチェックを行いたいと思います。さらに、作成前に全体を考える時間を確保し、修正の時間も考慮することで効率も良くなると思いますので、そういった新しい習慣を作りたいです。

「業務 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right