データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

データ・アナリティクス入門

あとひと手間!四段階で切り拓く解決力

どう問題解決する? 問題解決の基本プロセスとして、「What → Where → Why → How」の4つのSTEPを学びました。プロセスを細かく分解し、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性を強く感じました。日常の業務において、これらのステップをいくつも行き来しながら問題の原因を探る手法は、非常に実践的だと実感しました。 視点を変える意義は? また、仮説を立てる際には、問題に関わりがありそうな要素だけでなく、それ以外の視点にも目を向ける考え方が有益だと学びました。対概念で物事を考えるアプローチは、固定概念に囚われず幅広い視野で問題解決に取り組む姿勢を養うための大切なポイントです。 ABテストの真意は? さらに、ABテストを活用して施策の効果を比較し、条件を揃えた上でデータを分析するプロセスは、仮説検証の精度を高める上で非常に有効だと感じました。仮説を実践しながら効果を測定し、次のアクションにつなげる一連の流れは、今後の分析業務にも大いに役立つと思います。 離脱理由は何か? 加えて、ファネル分析によってユーザーの利用段階を明確に分解し、どのプロセスで離脱が生じているかを把握する手法も印象的でした。漏斗のように段階ごとに数値を追うことで、課題がどこにあるのかを具体的に把握できる点は、現場での運用改善に直結する大切な視点です。 実践で成長する? 全体として、これらのアプローチを繰り返し実践することで、柔軟かつ論理的な問題解決能力を養えると感じました。定量分析やアンケートを活用し、他者の視点も取り入れた説得力のある提案や、チーム目標の設定など、今後の実務や運用計画にも直結する内容で、非常に有意義な学びとなりました。

戦略思考入門

戦略思考で解く!目標達成の秘訣

戦略思考とは何が必要? 戦略思考について、まず①目標を明確にし、②その目標を最短・最速で達成する手段を選定して行動に落とし込むことが重要であると理解しました。この考え方は、日常業務から戦略立案まで、あらゆる仕事で不可欠です。 目標設定で注意すべき点は? まず、①の目標設定では、上司や顧客の期待する目標を具体化し、言葉で説明することが求められます。次に、②の手段選定では、優先順位を決めた上で、時間や費用、労力を考慮しながら進めます。また、③では、多くの解決手段から②の基準やその他の基準も考慮して比較し、最適な手段を選定します。 目標の明確化にどう取り組む? 私は特に①の目標設定の段階で、疑問点があっても深く考えずにぼんやりと目標を決めることがあると自覚しています。そのため、目標を明確に言語化し、自分の取り組みを論理的なストーリーとして説明できるようにしたいと考えています。 戦略思考をどこで活用する? 私たちの会社では、全社の理想像を具体化し、その到達に向けた戦略を立案する場面で、戦略思考が役立っています。また、自身の業務においても、調査業務や研究の方針決定でこの思考が有用です。 戦略思考で業務効率をどう改善? 日常業務では、まず自分で考えられる手段を増やし、その中から最適なものを選ぶことから始めたいと考えています。さらに、自分の業務に限らず、進捗が遅れたり成果がなかなか出ない研究チームを支援する際にも、戦略思考を活用したいと思います。具体的には、目標を設定し、最短で理想の姿に近づくための手段・方法を検討します。そして、チームリーダーや他のメンバーと協力し、アイデアやチームの課題について意見を集め、複数の手段を並行して選定していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

データ・アナリティクス入門

問題解決力を磨く成長の一歩 業務改善で未来を切り拓く

どう成長体験を感じた? ライブ授業を受講することで、初回の自分と比べ、問題解決のステップをどのように構築すべきかを未熟ながらもイメージできるようになり、成長を実感しました。講座全体を振り返る中で、自分が何を学んだのかを再認識し、理想の姿を描いたうえで現状とのギャップを把握しました。このプロセスにより、問題解決のステップを具体的に理解し、自己成長にも応用できるという確信を得ることができました。 業務目的は明確か? 原価登録業務の効率化と適正な登録タイミングの実現に向けて、改善すべき点を明確にしようと考えています。まずは、業務の目的をはっきりと認識することが重要です。自分が担当している業務だけでなく、関係全体の目的や役割を確認し、現状の状態を数値などで正確に捉えるよう努めます。その上で、目的に沿った理想の業務フローを描き、現状とのギャップを明確にすることが不可欠です。 どんな対応が必要? これを実現するために、業務フローを細かく分解し、各工程を前のステップと比較しながら問題箇所を特定します。そして、どのような対応が必要か仮説を立て、検証を進める計画です。業務の目的を達成できるフローを構築するため、必要なデータの取得方法や精度についても、関係者と十分に議論しながら取り組むことが大切だと感じています。 データ分析は適切か? また、データを収集する際には、盲目的に数値を追い求めるのではなく、あらかじめ立てた仮説に基づいて精査する必要があります。複数のフレームワークを活用しながら仮説を検証することで、思い込みによる誤った方向性に陥らないよう注意しています。こうしたプロセス全体が、業務上の問題を解決し、登録業務の効率化に大きく寄与すると考えています。

データ・アナリティクス入門

ロジックツリーで分析力がアップしたWEEK2の成果

Whatの重要性とは? 問題解決のステップにおける「What」の重要性として、「あるべき姿と現状を埋めるギャップ」を意識することが挙げられます。ここでも、正しい状態(ありたい姿)と現状の「比較」が必要であることを学びました。 ロジックツリーの活用は? 問題の明確化・特定の段階で活用できるフレームワークとして、層別分解と変数分解があります。特に変数分解の観点でMECEを考えることは、要素の抜け漏れが少なくなる可能性が大いに期待できると感じました。 また、ロジックツリーのコツ・留意点として、「感度の良い切り口をたくさん持っておく」という点が重要です。業界や会社ごとにキーとなる要素があるため、その観点をロジックツリーに組み込めるよう、日ごろから情報収集に努める必要があります。 分析スキルをどう向上させる? 分析を行う際、目の前の情報に飛びついて、初めから原因を勝手に予想してしまい、本質を捉えきれていない分析を行うことが度々ありました。面倒くさがって「What」を適当にしてしまうこともありましたが、分析は「What」と「Where」にこそ時間をかけて問題を特定すべきだと感じました。しかし、「What」を考えるにあたって、まず何をMECEを意識して分解するかが重要になります。自身の仕事においても、まず「What」「Where」のステップのクオリティを上げられるように努めていきたいです。 学びを実務にどう生かす? WEEK2で学んだことの共有やロジックツリーのフレームワークを活かせる業務の選定、過去のキャンペーンを取り上げて、講義と並行して学んだことをアウトプットできるような分析の場を設けることにも取り組みます。講義終了後、チームに共有します。

マーケティング入門

ヒット商品を生むための要件解析

ヒット商品を生むには? 商品がヒットするためには、多くの要素が絡み合う必要があると感じました。商品を生み出すこと自体は比較的容易ですが、ヒット商品に育てるのは簡単ではありません。まず、競合と比較して自社の強みが発揮できている分野かどうかが重要です。次に、ネーミングで商品をアピールし、親しみやすさを感じさせることが求められます。また、顧客の真のニーズを捉えているかどうか、つまりカスタマージャーニーを考慮し、単なるウォンツではなくニーズを理解することが大切です。顧客が支払ってでも解消したい不便(ペイン)を、利益(ゲイン)に昇華させることが求められます。 BPOとBPRの重要性 業務プロセスのアウトソーシング(BPO)や業務改革(BPR)も、クライアントのペインポイントを見つけ、それをゲインポイントに昇華させることが求められる事業だと感じます。特に、将来的に外部収益を伸ばしたい分野ではもちろん、現在の自社内の業務移管においてもこの視点が重要です。何がペインポイントなのかを追求し、それをゲインポイントに変換する方法を見つけ、実現につなげることが大切です。 効率化にどう取り組む? ステークホルダーが業務移管やBPOを希望する業務には、必ずペインポイントが存在すると思われます。(面倒なことや時間がかかること、コア業務でないから外部に委託したいなど)AIや自動化を用いた業務効率化がゲインポイントとなるのか、それとも業務フロー内に決定的なペインポイントがある場合を想定する必要があるでしょう。ただし、単純に工数の圧縮を目的にするのではなく、真のペインポイントを見つけ、それをゲインポイントとして昇華させる視点を持って、日々の業務に取り組むことが求められます。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

アカウンティング入門

運動成績に学ぶPLの極意

大局をつかむには? 損益計算書(PL)の読み方について学び、細かい項目に注目するよりは、大局をつかむことが大切だと理解しました。具体的には、売上や利益の動向に注目して読み解く方法がポイントです。特に、以下の3点に注意することが推奨されました。 売上高はどう見る? まず、売上高では、過去からの推移に目を向けることが重要です。次に、5つの利益においては、売上高に対する比率やその推移、各利益間の差に着目する必要があります。さらに、比較対象として、過去実績や業界平均、自社の目標値などを常に念頭に置くと、より実態に即した分析ができることを学びました。 価値はどこに? また、損益計算書を「運動成績表」に例える表現には、非常に分かりやすく感銘を受けました。儲けを大きくするためには、どのような価値が付加されているか、また儲けの源泉が何であるかを明確に把握することが鍵であると感じました。これからは、価値を意識しながら損益計算書を読むことを習慣化していきたいと思います。 実践はどう進む? さらに、Week2で学んだ内容を実践するために、自社の損益計算書を実際に読み、自社の経営目標の達成度を確認してみるつもりです。その結果をもとに、同業他社との比較から、自社が直面している課題や社会情勢、内部目標設定の問題点、また競合の動向などを分析していく考えです。 日常ではどう対応? 一方で、日常業務においてなかなかPLに触れる機会が少ないため、理解を深めるのが難しいと感じています。同じような課題をお持ちの方がいらっしゃる場合、どのような方法で日々の業務に学びを活かし、知識の定着を図っているのか、ぜひ教えていただけると幸いです。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

「業務 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right