データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

リーダーシップ・キャリアビジョン入門

変化を楽しむリーダーの軌跡

リーダーシップはどう? 現在の職場は比較的若いメンバーが多いため、日常の業務推進においてどのようにリーダーシップを発揮するかが課題となっています。これまで、指示型から支援型、参加型、達成指向型へと段階的にリードしていこうと試みてきましたが、各アプローチだけでは彼らのニーズを十分に補うことができないと感じています。そこで、どの仕事をどのメンバーに委ねるかを慎重に検討し、目標に対する道筋を明確に共有することで、メンバーが自発的に動ける環境づくりを期待しています。 マネジメントの課題は? また、将来的にマネジメントを担うメンバーに対しては、これまで動機づけに重きを置いた達成指向型だけでなく、抱えている不安に寄り添う支援型や一部指示型の手法も取り入れる必要があると考えています。どのリーダーシップの型にも固執せず、業務の内容や相手の状況をしっかりと把握した上で、ゴールに向かって導く姿勢を意識していきたいです。 実行ポイントは? 具体的には、以下の点を重視して取り組みます。 ① 任せる業務について、各メンバーが自立して遂行できるか、能力や経験が十分であるかなど、状態や状況を正確に見極める。 ② 目的を共有することで、メンバーの理解度や、業務達成に向けた具体的な道筋が描けているか、不安がないかを確認する。 ③ 理解度に応じて、業務の進め方(抽象的または具体的な指示の内容や確認のタイミング)を柔軟に調整し、結果として指示型、支援型、達成指向型のリーダーシップをバランスよく発揮する 成長環境は? 以上の取り組みにより、メンバーが持つ潜在能力を最大限に引き出し、自立して業務に取り組める環境作りを進めていきたいと考えています。

データ・アナリティクス入門

ロジックツリーで見える問題解決の新視点

問題の本質はどこ? 問題解決には2つの種類があります。1つは正しい状態に戻すための問題解決であり、もう1つは目標に到達するための問題解決です。これらの解決を図るためには、まず問題の所在を明確にし、具体的な問題箇所を特定することが必要です。自分が「これが原因・問題だろう」と考えていても、予期せぬ原因や見逃している問題が存在することがあります。これを防ぐためにロジックツリーを用いることが有効です。 影響はどう見える? また、原因や問題が業務や経営方針にどの程度の影響を及ぼしているのか、ライバルと比較して適切な条件になっているのか、全体の進行の中で重視すべき事象なのか、といった点も考慮に入れなければなりません。 説明は伝わる? 業務上、特定のスタッフに業務負荷が偏ってしまうといった問題を解決する際、原因をなんとなく感覚的に見つけ、「これが原因だろうからこうすれば良いだろう」と進めてきました。しかし、それを周囲に説明し納得してもらい、動いてもらうためには、今回学んだロジックツリーを活用することが効果的であると感じました。 戦略はどこに? 現在注目される訪日旅行において、どのエリアを強化するのか、どのような戦略を取るべきかを考える際、現状やこれまでの訪日旅行のトレンドや傾向についても考慮したいと考えます。 改善策は何だ? 業務改善においては、ロジックツリーを活用して、問題の本当の原因を他の管理職と共に追求します。その上で、人員を増やすべきか、業務フローそのものの効率化を図るべきかについて議論します。また、今期の方針として、訪日旅行に関するどのようなデータが必要かを調査し、その中から必要な情報を選別する予定です。

データ・アナリティクス入門

データ分析で見分ける成功の鍵

データ分析で比較はなぜ重要? データ分析の基本は「比較」であることを学びました。しかし、ただ単に比較すれば良いというわけではありません。分析の目的に応じて比較の軸が異なるため、その目的を明確にすることが重要です。さらに、データ分析の結果を報告する際には、見せ方を工夫することも大切です。比率を見たいのか、推移を見たいのかなど、定量データに応じた適切な見せ方を検討する必要があります。 飛行機の生存能力をどう改善? 動画の中で、飛行機の生存能力を上げるための改善点を考えるという課題がありました。初めは「欠損している部分」を改善するべきだと思いましたが、分析の目的を考えると、「欠損していない部分」を補強する方が生存能力が上がるという解説を見て納得しました。 業務でのデータ分析の課題とは? 日々の業務でも、お客様がデータ分析をしたいと言いつつ、現状の把握だけで終わってしまうケースが多々あります。そこで、データ分析の基本として、目的の明確化と比較の重要性を伝えていきたいと思います。たとえば、実績だけの数値を並べているケースでは、その数値が良いのか悪いのか判断できず、その後のアクションが不明瞭になっているお客様が多くいます。このような場合には、具体的な提案を行いたいです。 学びを実践するプロセスが大事? 学んだことを実践し、アウトプットすることで、その結果が良かったのか、改善の余地があるのかを言語化することも大切です。振り返りを必ず行い、学んだことを整理し自分の中に落とし込むプロセスを欠かさないようにします。グループワークや講義の中では、自分ごととして捉えることを意識し、積極的に考え、発言するように心がけています。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

アカウンティング入門

各企業の資産投資を見極める経営戦略の要点

企業の費用配分の違いに気づく 企業の費用配分や資産投資の方法が異なることに気付きました。その基準は業態や企業のコンセプトによって異なるため、改めて認識を深めました。例えば、IT関連企業のZOOMとNetflixを比較すると、両者は固定資産の比率がANAとは異なり低いと認識しています。ZOOMは営業や管理に多くの費用をかけるPush型の業態を展開していますが、Netflixは顧客が見たいコンテンツを開発するPull型の業態を展開しており、それがB/Sに大きく影響していると感じました。 他社のB/SとP/Lをどう活用する? 自社や他社(自業界・他業界)のB/SやP/Lを見て、その企業のコンセプトについて企業概要や決算報告書を参照し、類似例があるかどうかを確認したいと考えています。特に、自業界においては企業の規模(グローバル企業、国内メイン大手、中規模、外資系バイオベンチャーなど)によってどのような特徴があるかを自ら調べるつもりです。このためには各社の会社概要や決算報告書、本国を含むパイプラインリストを参照することが重要だと思いました。 具体的な方法で何を目指す? そこで、具体的に以下のような方法を実施しようと考えています。 1. 各社のB/Sと事業報告書を見て、研究開発に力を入れているのか、販売管理に力を入れているのかをパイプラインの数やステージによって確認する。 2. 各社のP/Lと事業報告書を見て、パイプラインフェーズとP/Lとの関係性を確認したい。特に、臨床試験の成功や失敗後、それらがどのように推移するのかを見ていく。 これらを通して企業の特性や戦略を理解し、今後の業務に活かしていきたいと考えています。

データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

戦略思考入門

受講生の学びが未来を切り開く鍵

ターゲットと独自性は? 差別化を図るためには以下のポイントが重要です。まず、ターゲットを明確に絞り込み、顧客のニーズや嗜好を深く理解します。これにより、どのような特徴やサービスが求められているのかを把握します。そして、競合他社を分析し、自社の独自性を際立たせる要素を見つけ出します。特に顧客に対して独自の価値を提供し、それを明確に伝えることが重要です。 なぜ模倣を防ぐ? また、よくある模倣を防ぐために、アイディアは継続的に考え抜く必要があります。簡単に思いつくことは誰にでも容易に真似されてしまうため、差別化には特異性(付加価値)が求められます。例えば、ホテルやレストラン、あるいは家電製品など、多くの業界で付加価値をつけた商品が支持を得ていると感じます。 どうやって効率上げる? 競合する部署がない場合でも、他社の同様の部署と比較することで、効率化や高品質化のヒントを得ることができます。業務フローの見直しや自動化ツールの導入は、作業の効率を向上させる効果があります。これによりコスト削減や迅速な対応が可能となります。サポート体制やコミュニケーションの質の向上によって、スタッフ間の満足度を高めることも有効です。場合に応じて、フレキシブルな対応ができるようにすることも検討が必要です。 どの技術を使う? さらに、業務スキルの向上を図ることで高品質化を目指すことができます。また、AIやRPAなどの知識を身につけ、それらを活用することで効率化が可能になります。フレームワークを活用できる場面では積極的に試み、どのフレームワークを使うべきかに関しても多くの選択肢を持てるようにします。

「業務 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right