クリティカルシンキング入門

情報を分解して新たな可能性を発見

グラフ化の重要性とは? 分解を行うことで、解像度が向上することを痛感しました。特に、グラフ化の重要性を理解し、視覚的に情報を把握するのは新鮮で面白い体験でした。切り口が見つかると、その観点に注力しやすくなるものの、さらに多様な切り口を考えることも重要です。新たな発見を確定的な答えと見なしすぎず、分解を進めることで結果の変化が生じる可能性も意識するべきだと感じました。手を動かすことで初めて見えないものも浮かび上がり、「見つからなかった」ということ自体も価値のある結果と捉えられる点に気づき、はっとさせられました。 MECEをどう意識する? 分解を行う上で重要なのは、常にMECE(漏れなくダブりなく)を意識することです。これにより、目的に沿った分解を進められます。日常の業務において、分解を実施する際は次のポイントを意識しています。①全体を正しく定義しているか、②分解が目的に沿っているか、③他者からフィードバックを得て、自身の思考の癖を補正することです。 分解の応用例は何か? 具体的には、データが扱われるさまざまな業務に応用が可能です。例えば、備品の在庫管理や発注予測、さらに社内コミュニケーションを活性化するイベントでも有効です。特にアンケート形式でデータを収集する際には、設問設計が非常に重要であり、目的に応じた分析の切り口を試行錯誤しながら模索したいと思っています。 どのように課題を洗い出す? 現状の業務運用における課題を洗い出すためには、データを多様な切り口で分解し、仮説を立てることが欠かせません。特に、MECEを意識し、分析の目的を見失わないようにすることが大切です。備品の在庫管理では、現状データを分解し、傾向を見出すことで在庫の無駄を排除し、適正な発注を図ります。また、社内のコミュニケーションイベントでは、プロセスごとに課題を明確化し、分解した結果に基づいて翌年のアンケート設問設計を見直していく予定です。

戦略思考入門

営業戦略の新しい道筋を探る

顧客対応の優先順位はどう決める? 利益率やタイムパフォーマンス、そして将来の顧客成長率などの定量的なデータを基に、顧客対応の優先順位を決定していくプロセスについて理解が深まりました。一方で、これまでの担当者との人間関係といった主観的な要因を考慮に入れて「捨てる戦略」を採用することは、日本の商慣習の中では難しいと感じています。 文化的要因はどう分析する? 総評として、利益率やタイムパフォーマンスの理解が進んでいることは素晴らしい成果です。文化的な違いによる商習慣の難しさも重要な視点です。文化的要因をさらに具体的に分析することで、理解が一層深まるでしょう。 営業戦略に必要な仕組みは? 今回の学びから、営業戦略を練る際には、自社の営業先ターゲットのタイムパフォーマンスをしっかり把握し、売上の最大化につながる仕組みを構築する必要があります。具体的には、余分な人的リソースを投入すべきかどうかを営業戦略にしっかりと反映させ、判断できる体制を整えることです。 主観と客観のバランスは? また、営業管理ツールのダッシュボード機能を活用し、顧客別の売上や構成をチームで分析することが重要です。この際、客観的な判断基準だけでなく、これまでの顧客との関係性などの主観的な情報も加味した判断基準を設けることで、営業戦略の立案に役立てることができます。 捨てる戦略に影響する要因は? さらに思考を深めるために、日本と他国の商習慣の違いがどのように捨てる戦略に影響を与えるのかを具体的に考えてみてください。また、顧客の優先順位を決定する際に、主観的な要因と定量的な要因をどのようにバランスさせるかについても考察を深めてみてください。 洞察を実践へどうつなげる? 最後に、今回の洞察を基に具体的な状況分析を行い、それを実践につなげられる方法を模索してみてください。引き続き、頑張ってください!

戦略思考入門

有限資源が生む無限の可能性

どんな学びがあった? week1からweek5までの学びを振り返り、有限な資源を効果的に活用するためには、まず情報を収集・整理し、自分の判断軸に基づいて本質を見極めた上で優先順位をつけることが有効だと理解しました。今回の学びは、仕事以外にも応用できる点が特に印象に残りました。これまで分けて考えていた部分が、ライブ授業を通してプライベートの目標や趣味にも活かせることに気づき、限られた時間内で計画を立て、実行に落とし込めると感じました。 情報整理はうまくいっている? 日頃から情報収集や整理を行う際には、有限なリソースを意識し、時間をかけすぎないようアンテナを張っておくことが大切です。また、専門の取引先に情報提供を依頼するなど、工数管理を徹底する姿勢も必要だと考えています。 新制度の判断はどうする? 自社では捨てる・辞めるという行為について比較的寛容な面があるため、新しい制度を導入する際には試験導入を行い、実際に期待する効果が得られるかどうかを慎重に判断することが望まれます。判断軸としては、会社の方向性をしっかり把握し、経験則に頼りすぎないことが重要です。不明な点があれば相手と対話し、真意を確認するように努めたいと思います。 ニュースや情報はどう活かす? また、日常的にニュースや他社情報にアンテナを張るとともに、他社の財務諸表の分析を行うことで、内容によっては定点観測し派生する影響も把握できると感じました。さらに、専門知識を持つ取引先との接点を日頃から持つことも、情報の更新に役立つと考えています。 チームの連携はどう取る? 実行後には、捨てる・辞めるという判断もあらかじめ決めておくことで、スピード感を持って取り組むことができると実感しました。さらに、業務開始時にチームメンバーと判断軸を共有し、認識を統一することが円滑な業務遂行に繋がると感じています。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

戦略思考入門

捨てるからこそ見える未来

戦略の捨て方は? 今週は「戦略における捨てること」について学び、実践演習では営業先の売上に関する情報を用いてROIを算出し、優先度を下げるべき営業先の事例を分析しました。 苦手意識の理由は? 講義では、日本企業が捨てることに苦手意識を持っているという話があり、自社にもその傾向を感じると同時に、ファーストリテイリングや日立製作所のように、選択と集中を積極的に進めて収益性を高めている事例もあると理解しました。 資本コストの影響は? また、上場企業においては、資本コストを意識した経営が求められる中、捨てる選択がますます重要になるのではないかと考えるようになりました。 取引先の扱いは? 業務上、複数の取引先とやりとりする中で、要求が細かく、契約書以上の依頼をするクライアントが一定数存在するため、こうした顧客情報は社内で共有し、非積極顧客として管理していく必要があると感じています。 修正対応の基準は? 納品後の修正対応については、納品内容に問題がある場合は当然対応するものの、問題がない場合や細かい点に関しては、すべてを無条件に受け入れるのではなく、一定の姿勢を保つことも大切だと考えています。 顧客リスト整備は? そのため、積極顧客リストと非積極顧客リストを作成し、営業部門と連携して、非積極顧客の案件は基本的に受注しない方針を進めていきたいと思います。 CADはどう外注する? さらに、建設コンサルタント業界では3D CADの導入が進んでおり、現状、社内人員で作成しているものの、業務フローを鑑みると外注に依頼する方が現実的と考えます。今後は、社内で人材を育成するのではなく、3D CADを扱える外注先の開拓や、必要に応じて外部企業の買収などを通して、対応力の向上を目指していく必要があると感じました。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

クリティカルシンキング入門

疑いが拓く学びの扉

本質をどう捉える? 本質的な課題を捉えるためには、まず目的を明確にすることが大切だと感じました。何のために、何を問うのか、その根底にある本質に迫ろうとする中で、当たり前と思い込んでいる事柄に疑いの視線を向けると、より本質に近づけるのではないかと思います。また、その問い方は単純な二者択一に終始せず、柔軟な姿勢を保つことが重要です。問いは一度限りではなく、何度も継続して行うべきで、その際、視点が偏らないよう多角的に分析し、具体的な実践を心がける必要があります。統計的なデータやその分析手法も、このプロセスにおいて有効なツールとなるでしょう。 本当の課題は何? 私はIT業界で働いており、この考え方は特に要件定義工程で役立つと感じています。本当にその機能が必要なのか、ユーザの真の課題は何か、また解決策がユーザ側の視点から見て適切かどうか、といった検証が必要な場面です。さらに、バグや障害対応においても、なぜ問題が発生したのか、どのタイミングで混入したのか、過去の事例と比較することで原因を追求する際に、このアプローチは有用です。開発プロセスの改善やリスク管理の分野でも、「今までのやり方が正しいのか」という疑念を持ち続け、常に振り返りながら改善を図る上で効果的だと考えます。 問いの立て方は? 「本質的な課題を捉える問いの立て方を身につける」ための行動計画としては、まずは疑いながら考える習慣をつけることから始めます。仮説を立て疑うことを日常に取り入れ、必要な理論や手法を書籍や研修を通して体系的に学びます。その後、実際の会議や小さなチームミーティングで本質的な問いを繰り返し投げかけ、意識を高めることを目指します。実践後は振り返りを行い、その結果を次回に活かすというサイクルを繰り返すことで、確実に身につけていけると考えています。

データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

クリティカルシンキング入門

多角的視点で切り込む課題の核心

どうしてイシューを選ぶ? 課題に向き合う際、まずはイシュー(最優先課題)を特定し、その対策に取り組み、対策後に次のイシューへと順次対応していくという繰り返しで、効果的な課題解決が可能であると学びました。 客観的視点の意義は? イシューを特定するためには、起こっている事象について客観的かつ多角的に事実を把握し、分析する必要があります。主観や偏ったバイアスにとらわれると、すべての課題を洗い出すことが難しくなるため、あくまで客観的な視点を維持することが重要だと再認識しました。 優先順位はどう決める? また、洗い出した事実や課題を分解し、分析して優先順位をつける際にも、主観やバイアスを排除した客観的・多角的な判断が求められます。この点が最も難しい取り組みであると感じました。 計画管理の秘訣は? 私の職務においては、事業計画を策定し、その計画通り、あるいは逸脱した状況を補完しながらプロジェクトの管理を行い、計画の達成を目標として部署のマネジメントを実施しています。計画と実績の差異に対処し、次期の計画を策定する流れの中で、客観的かつ多角的に事実分析を行い、優先課題を特定して対策を講じる一連のプロセスに、今回の研修で学んだ方法や意識すべき点が大いに役立つと感じました。 実績乖離をどう乗り越える? 今後、計画と実績の乖離に直面した際には、以下の3点を意識して取り組んでいきたいと思います。 問題の根源を探る? 1.事象や問題を洗い出す際には、主観や無意識のバイアスを排除して、客観的かつ多角的に見直すこと。 2.洗い出した事象や問題の原因を分解・分析し、本質的な起因を探ること。 3.多数の問題や課題の中からイシュー(最優先課題)を特定し、その対策を実施すること。

戦略思考入門

規模の経済性で印刷業務を改善する方法

規模の経済性とは何か? 実践演習を通じて、生産数量が増えることで1個当たりの固定費が減少すること、すなわち「規模の経済性」という用語を初めて知りました。しかし、単純に発注量を増やすだけでなく、需要のバランスや原材料の供給、品質、在庫管理の問題など、多様な要因を総合的に検討する必要があると実感しました。この考えは、私の業務である資材の印刷費にも応用できそうです。例えば、需要の確認や原材料費、印刷部数などについて、過去の経験に頼るのではなく、常に現状に合わせて見直す必要性を感じました。 戦略的思考をどう実践する? 総合演習では、業界の数値や状況をフレームワークで整理し言語化することで、自分が考えていた施策とは異なる施策の可能性を見出せることもありました。「戦略的思考」の3つの要点を達成するためには、適切なゴールを設定し、そこに至る道筋を明確化することが重要であり、それを他者に理解してもらうために言語化することを業務でも実践していきたいと思っています。 印刷費管理の課題とは? さらに、印刷費の管理では、大量印刷による倉庫管理費や廃棄コストについても見直しが必要です。紙の原価が上昇している現状において、常に需要を確認しながら印刷の必要性を再考することが求められます。これに対して、顧客ニーズや印刷利用数のデータを基に、毎回印刷部数とその必要性をメンバーと共に確認していく提案を進めていきたいです。 フレームワーク活用の重要性 また、総合演習から学んだ3C分析やPEST分析などのフレームワークは、実際に自分の業務で使ってみることによって初めて身につくと感じました。これらの手法を用いて、自分の考えを他者と共有し、適切なゴールや対応策を探求していきたいと思います。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

アカウンティング入門

PLで変わる利益の見方と経営戦略

PL読み方で経営判断に役立てるには? PL(損益計算書)の読み方が変わることで、どの項目が利益を生み出しているのかを正確に把握し、経営判断に役立てられると考えました。例えば、低価格戦略を採用する場合、売上総利益率の管理が重要であり、原価や人件費の削減が利益確保の鍵となります。また、商品の回転率向上や付加価値の高い商品の販売比率を分析して、売上を最大化する施策を考えることができます。PLを利益構造の視点で分析することで、経営戦略の精度を上げ、持続的な成長に結びつけることを学びました。 病院経営で利益を上げるには? 病院経営においても、診療報酬や自費診療の構成を分析し、どの診療科やサービスが利益を生んでいるのかを明確にすることが重要です。例えば、外来、入院、手術、検査の各部門の収益性を分析し、利益率の高い診療を強化する戦略が考えられます。さらに、物品の共同購入、在庫管理の最適化、ICT活用による業務効率化、スタッフの業務フロー改善による労働生産性向上にも役立てたいと思います。 患者の回転率向上に向けた施策は? 病院では「患者の回転率」という視点が特に重要です。例えば、病床回転率を高めるために、退院支援の強化や在宅医療との連携を強めることで入院日数を適正化し、より多くの患者を受け入れることができます。また、外来診療や手術件数を増やすためのスケジューリング最適化も重要です。診療報酬データや患者満足度調査の結果を活用し、どのサービスに改善の余地があるのかを分析することで、経営戦略の精度を高めることが可能です。例えば、患者満足度が低い診療科で業務フローを見直し、患者リピート率を向上させる施策を立てることもできます。このような視点で取り組みたいと考えています。

「分析 × 管理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right