データ・アナリティクス入門

データ分析で見えてくる新しい視点

データ分析の基本概念とは? 今回の講座を通じて、データ分析のアプローチ方法や考え方を学ぶことができました。特に以下の点について多くの学びがありました。 まず、「分析とは比較である」という基本的な概念を理解しました。また、データ分析においては仮説思考が重要で、最初に仮説を立ててからデータを使ってその確からしさを確認するプロセスが大切であることを学びました。特に印象的だったのは、スポーツチームの例を通じて、単に打率ではなく得点貢献度に注目することでチームが勝つための分析方法を実践している点でした。 問題解決の枠組みは? さらに、問題解決のアプローチ方法として、「what、where、why、how」という枠組みを学びました。また、分析の視点としてインパクト、ギャップ、トレンド、ばらつき、パターンの五つの視点を持つことの重要性を認識しました。それぞれの視点に合わせたグラフの見せ方も習得しました。 今後の実践計画は? これらの学びを実務に反映させるべく、現在進めているマーケットプランの中で実践していきたいと思います。具体的には、仮説思考を取り入れてロジカルにフレームワークを組み立て、その仮説をデータで証明するために正しいグラフを選び、説得力のある資料を作成します。そのために、フレームワーク、ロジカルシンキング、グラフの見せ方を再度復習しました。 9月14日から9月16日にかけての期間に、これらの復習を行いました。そして、9月中には今回習ったことを営業組織にフィードバックし、アウトプットに向けての準備を進めます。これらの知識とスキルを、日常のマーケットプラン、アカウントプラン、計数管理、CS調査に役立てていきます。

アカウンティング入門

仮説が切り拓く未来のヒント

事業の意義はどう? オリエンタルランドを例に、B/Sの構造を読み解くという演習を通して、事業内容や提供価値に基づいた仮説の立て方を学びました。まずは、どのような事業を展開し、どのような価値を提供しているのかを整理。その上で、経費や資産の状況から、必要な支出や現有するリソースを考察しました。 分析結果は説得的? 全体として、事業内容や提供価値に即した仮説立てが非常に説得力があり、分析が的確に行われたと感じました。次回は、この分析結果を踏まえて、さらに具体的な行動計画に落とし込むと、知識の実践的な活用が一層深まるでしょう。 資金運営の課題は? また、実際の分析過程においては、非日常感の提供という点で、資産や経費の管理が徹底していることが強みとして浮かび上がりました。一方で、いずれの取り組みも大規模な資金を要するため、調達面での課題がある点も見受けられました。企業の事業形態や実態を十分に理解することが、より精度の高い仮説形成につながると再認識しました。 他社の検証はどう? さらに、他社の分析や情報収集においては、まず気になる企業の事業内容や提供価値について、思い描く仮説を立てることが重要です。その後、その仮説に基づいてどのようなP/LやB/Sが存在しうるかを考え、実際の数字と突き合わせることで、自分の仮説の妥当性を評価することができます。仮説が一致していれば自信につながり、もしずれている場合は、着目すべきポイントを学ぶ良い機会となるでしょう。 知識活用はどのように? この学びを今後のステップアップに役立てるためにも、得た知識の活用方法を具体的に考え、自己の分析スキルをさらに磨いていってください。

戦略思考入門

現実を知り、未来を描く学び

規模の経済ってどう考える? 「規模の経済性」という言葉は知っているものの、自社の状況に合わせて具体的に説明するのは難しく、正しい理解が必要だと感じました。生産量を増やすことで必ずしもコストが下がるわけではなく、需要、設備能力、在庫管理、資金繰りなど、さまざまな制約条件を考慮しなければならないと分かりました。また、原材料を大量に発注してコスト削減を狙っても、市場環境や仕入先の状況によっては効果が限定される場合があり、単に数量を増やすだけでは交渉力に繋がらないことも理解しました。 戦略原理は実践できてる? さらに、戦略の原理やフレームワークは知識として持つだけでは不十分で、数字やデータ、自社の実情に照らして活用することが重要だと感じました。自社の商品やサービスの理解を深め、業務フローや収益構造を把握することで、提案や意思決定の説得力が向上することにも気付かされました。 生成AIの変化はどう捉える? また、生成AIの登場により、従来の開発者が習熟していく過程が変わりつつある現状もあり、この変化は「習熟効果」が技術革新によって無効化される例ともいえ、イノベーションが既存の競争原理を覆す瞬間だと感じました。 多領域スキルはどう磨く? このような状況に対する打開策として、単一の専門スキルに依存するのではなく、複数の領域にまたがる知識や経験を横断的に活用できる体制を築くことが有効だと考えます。具体的には、開発者としてのコーディング能力だけでなく、要件定義、UX設計、ビジネスモデルの構築、データ分析など、隣接する領域のスキルを組み合わせることで、AIツールを前提にした新たな付加価値の創出が期待できると感じました。

クリティカルシンキング入門

違う切り口で見える真実

違う切り口に気づく? これまで、毎月のルーティーンとして売上や利益率の分析を行ってきましたが、今回の学習で「違う切り口で分解する」ことの重要性に気づかされました。 即時反応は正しい? WEEK1で「安易に答えに飛びつかない」と誓ったにもかかわらず、目に入った情報にすぐ反応してしまい、結果として誤った結論を導いてしまったことは反省すべき点です。改めて、目の前の数字を丁寧に分析し、論理的に結論を導くことの大切さを実感しました。また、数字を人に伝える際には、グラフなどを用いて視覚的に表現することで、より分かりやすく伝えられることも再認識しました。 数字はどう活かす? 今回学んだことは、営業面で売上や利益率の分析から将来の予測を立てる際や、管理面で長時間労働の傾向やストレスチェックの結果を把握する際に、大いに役立つと感じています。何かを改善するためには、まず現状を正しく把握することが不可欠であり、複数の切り口から数字を分解することが重要だと学びました。これを踏まえ、明日からの業務では、数字を多角的に捉え、本質的な課題の発見と改善に努めたいと思います。 他視点の必要性は? これまで、毎月の売上分析を同じ切り口で行い、そのデータを積み上げて傾向を把握し、対策を講じてきたと考えていました。しかし、今回の学びを通して、それだけではなく、異なる視点から分解してみることが重要であると改めて感じました。一方で、実務では「見える数字」が限られているため、どうしても同じような分析に陥りがちな現状もあります。皆さんは、このような「分析のマンネリ化」にどのように向き合っているのか、ぜひお話をお聞かせください。

リーダーシップ・キャリアビジョン入門

自分再発見!キャリア再設計の一歩

自分の価値観は? キャリア・アンカーとは、仕事を進める上で自分が最も大切にしている価値観や欲求、動機、能力などを認識するセルフイメージだと理解しました。GaiLを通じて、私自身のキャリア・アンカーは「奉仕・社会貢献」、「純粋な挑戦」、そして「起業家的創造性」であるという認識が深まりました。これにより、今の自分と理想的なキャリアとのギャップを明確にし、どのように前進すべきか具体的にイメージすることができるようになりました。 キャリアの迷いは? しかし、理想のキャリアへ向かう道は一直線ではなく、時にはドリフト(サバイバル状態)を繰り返す現実を実感しました。そこで、節目ごとに自分のキャリア・アンカーを再確認し、今後の行動指針を見直すことが、モチベーションの維持や向上につながると感じています。 具体策はどう? また、キャリア・アンカーを実践するための具体的な4つのステップ―現職務の分析、将来計画の策定、周囲との対話、そして積極的なキャリア管理―について学びました。中でも、周囲の関係者や家族と話し合うことで、自分では気づかなかった視点を得られることが大きな収穫でした。これを機に、今後は積極的に周囲と意見交換を行い、キャリア形成の質を高めていきたいと思います。 職場でどう実現? さらに、学んだ内容を職場でも実践したいと考えています。チームミーティングの際には、キャリア・アンカーを題材に、メンバーと意見交換をしながら自律性やモチベーションの向上を図りたいです。そして、自身に対してもキャリアの棚卸しを行い、専任のキャリアコンサルタントと話し合いながら、具体的な将来計画を策定していく所存です。

戦略思考入門

規模運用の裏側で見えた真実

規模の影響を感じる? 資産運用においては、運用資産が10億円であろうと1,000億円であろうと、国債のように個別性の乏しい資産の場合、運用に必要な人員は大きく変わらず、1単位あたりの人件費が抑制できると感じました。しかし、資産規模が大きくなり、個別性の強い多様な資産を扱う場合は、全体のリスクとリターンの管理や個別資産の分析に追加の人員が必要となり、人件費が増加する可能性があります。また、取引時のマーケットインパクトにより、取引コストが嵩む恐れもあると考えています。 リソース共有が鍵? さらに、範囲の経済性の視点は、運用態勢の見直しにおいて有効であると感じました。現在の組織が持つリソースを他部署と共有することで全体のコストを抑制することが可能ですが、リソース共有にあたっては、親和性や競争優位性の確保に十分留意しなければ、かえって非効率になる危険性があります。実際、所属するグループでは運用利回りの抜本的向上のために運用態勢の見直しが求められており、他部署との統合という選択肢も検討しています。類似の資産を取り扱う場合、組織統合により資産取引や分析のための人員を共用して人件費削減が可能ですが、運用方法が異なる資産を同じ枠組みで扱うと管理が煩雑になり、非効率を招く可能性があります。一方で、自部門の得意な運用手法を他部署に導入することで、資産運用全体のクオリティを向上させる可能性も感じています。 合併の実例は? また、会社や組織の合併により、規模の経済性・不経済性や範囲の経済性がどのように表れるのか、実際の事例を共有していただけると、今後の運用態勢の検討に大いに参考になると考えています。

データ・アナリティクス入門

論理を楽しむ!ロジックツリー活用術

WhatとWhereを問いかけると何が見える? What、Where、Why、Howのステップを通じて全体像を分析することの重要性を学びました。これまでは問題解決方法(How)だけに焦点を当てていましたが、WhatやWhere、Whyを問いかけることで、これまで気付かなかった不明確な点が見えてくる過程がとても楽しいと感じています。 ロジックツリーで視点をどう拡げる? また、ロジックツリー(MECE)を活用することで、「もれなく、だぶりなく」分類整理や、層別分解、変数分解が可能になり、とても興味深く学びになりました。物事を分解し、細分化することで新しい視点が得られ、それが意思決定や問題解決に役立つと感じています。 日々の業務にロジックツリーを応用するには? 日々の業務を管理する際に、上記のロジックを応用していきたいと思います。まだ具体的にどのキャリアに進むかわからないものの、ロジックツリーを活用することで、課題を整理し、聞き手にとってわかりやすい説明ができるだけでなく、周囲の同意や協力を得やすくなります。プロジェクトマネージメントの仕事では、know-howやプロセスの整理ができていたものの、周囲の理解を求める際の論理的な説明スキルには不足を感じていたため、これを改善していきたいと考えています。 ロジックツリーを習得する方法は? ロジックツリーを日常的に活用し、自分のものとして習得したいです。具体的には、MECEを用いてAIに壁打ちし、アイデアの整理を行います。さらに、メモに書き出し、図にすることで頭の中を整理し、スキルアップのHowツリーを更新していこうと考えています。

アカウンティング入門

財務諸表で見える成長の軌跡

財務三表で判断? 客観的な意思決定を行うためには、事業活動を数字で定量化することが必要です。そのためのツールとして、損益計算書、貸借対照表、キャッシュフロー計算書という財務三表があります。損益計算書はどれだけの利益を上げたか、貸借対照表はお金の使い方や調達方法、キャッシュフロー計算書はお金の増減を示します。これらを読み解くことで、経営状態を把握し、適切な意思決定につなげることが可能になります。 決算報告はどう見る? 自社の決算報告に含まれる財務諸表を通して、自身の業務における課題を明確にするだけでなく、株式を購入する際には対象企業の経営状態を確認し、将来的な成長を予測するためにも活用できます。また、財務三表の数値から経営状態を描写し、バリューチェーンの各プロセスにおけるロスの所在を把握することも目指しています。特に、貸借対照表を深く理解することで、調達にかかる費用がどのように効率的に使われ、どう価値が創出されているかを明らかにしたいと考えています。 会計をどう学ぶ? 現在は予算管理程度しかできていませんが、会計の知識を学ぶことで、減価償却や固定資産の理解を深め、損益分岐点やROA、ROEなどの総合的な分析力を身につけることを目指しています。今後は、学んだことを業務に積極的に活用し、継続的なスキル向上を図りたいと思います。 初心者でも安心? 会計に関する基礎知識が全くない状態からのスタートで不安もありますが、仲間とともに学びながら、「聞くは一時の恥、聞かぬは一生の恥」ということわざを胸に、積極的に知識を吸収していきたいと考えています。どうぞよろしくお願いいたします。

戦略思考入門

ビジネス効率を左右するシナジーの真実

経済性の理解は十分? 規模の経済や不経済、範囲の経済、ネットワーク効果といった概念を正しく理解することは、事業経済性のメカニズムやビジネス法則を誤らないために必要です。特に、指数関数的に変化する現代では、テクノロジーがキーワードとなり、迅速な対応が競争の基盤となっています。 シナジーは本当に有効? 学んだことの一つに、「シナジーは本当にあるのか」という点があります。既存の資源を活用して効率的にビジネス展開を行うことが一般的ですが、その方法が本当に効果的なのか、既存資源が競争優位性として本当に機能しているのかを慎重に分析する必要があります。シナジーが逆に非効率的になることもあるからです。 部署異動は効果ある? 自社業務に当てはめて考えると、社内異動が範囲の経済に関連するのかという疑問が生じます。現在所属している技術部から、将来的にマーケティングや営業など他の部署への異動を考慮していますが、過去の知見や経験を新しい部署に活かすことでシナジー効果が本当に生まれるかという点について考えたいです。これをどのように分析し、判断すべきなのかを検討しています。 兼任制は効率化? また、組織内で兼任制を採用しており、ISO監査やプロジェクト管理、営業活動を行っていますが、規模の経済性から見るとこの方針が適切かどうかも重要な検討事項です。このようなことも鵜呑みにせず、メリットとデメリットをしっかり整理し、分析する習慣を持つことが大切です。指数関数的に変化する時代において、判断に迷う場合はまず行動を起こし、やりながら調整しつつスピードを出すことも求められていると感じます。

戦略思考入門

振り返りで築く未来戦略

どうして多角的な見直し? 仕事において、毎回全てを実施できるわけではありませんが、多角的に物事を見直す「ここぞ」というタイミングを見極めることは重要です。スポーツのビデオレビューのように、過去の自分の行動を整理し、継続するための指針としてまとめることが効果的だと感じました。また、状況に応じて敢えて一つに絞る戦略も大切であると学びました。 定量分析の習得は? 一方で、理系的な定量分析による仮説ベースの戦略思考は、習得に時間を要する課題であると理解しました。指導を受けながらも地道に実践していくことで、徐々に身につけられるという点に納得しています。 キャリア設計はどうする? これからは、3年間の出向が終わる9月以降に自身が取り組む業務を提案する際の題材として、本学での学びを活かしていきたいと考えています。自動車業界は電動化、自動化、DX化などの急激な環境変化に直面しており、その中で「何をやり、何をやらないか」をはっきりさせるために、将来のキャリアプランを見据えた目標設定が欠かせません。 戦略確立の秘訣は? そのために、以下の点に取り組む予定です。まず、自分の将来ビジョンを明確にし、具体的な目標を設定します。次に、現在の課題や管理職のニーズ、組織リソースなどをしっかり情報収集・分析し、全体の整合性を取っていきます。また、自分が行う業務について専門性やスキル、市場環境の観点から差別化を図り、想いや将来性といった軸を定めた上で選択を行います。最後に、その取り組みが本質やメカニズムに合致しているかどうかを整理し、戦略の確立を目指したいと考えています。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

戦略思考入門

リソースを活用した効果的な学びの秘訣

リソースの投入はどう? リソースは限られているため、最も効果的な場所にリソースを投入する必要があります。そのためには、優先順位を明確にし、判断基準をしっかり持つことが重要です。事例で学んだROI(投資した資本に対して得られる利益の割合)は非常に参考になりました。また、手元に判断材料がない場合には、仮説思考を活用して検討を進めることも有効です。異なるパターンを考慮し、ポジティブ、ネガティブの両面から設定を検討するのもよい方法です。複数の視点を持って考えることは、ビジネスの複雑な状況において必要不可欠です。 ROI評価、改善は? 判断過程でROIが低い業務は、思い切って見直すべきです。戦略においてはメリハリをつけて判断し、数値に基づいて決断することが求められます。 業務の見直しは? 自身の業務を見直す際、費用対効果を考えてみます。時給9千円に見合っているかどうかも考慮します。 業務改善の具体策は? - **帳票管理** 帳票の整合性確認に時間がかかっているため、これを自動化することを検討します。 - **報告資料** 報告内容が多く、時間がかかるため、上司が使わないであろう報告内容は簡略化します。 - **新規顧客獲得活動** マッチングプラットフォームを用いた活動で受注率が低いため、自組織の強みを活かした案件にシフトし、紹介活動に力を入れます。 - **活動行動ログ** より良い目標に向かうために活動の目標を明確にし、それに基づくデータを再確認します。正しい分析を行うために、ゴミデータの除去も意識します。
AIコーチング導線バナー

「分析 × 管理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right