アカウンティング入門

売上原価に潜む成長の秘密

売上原価の違いは何でしょうか? 企業分析を行う際、販管費と比べて業界やビジネスモデルによって売上原価の構成が大きく異なる点に着目することが非常に大切です。売上原価は売上獲得に直接関係するコストであり、各企業が採用する価値創造プロセスの違いによって、その内容が大きく変わってきます。学習中には、とある大手企業の事例からこの点の重要性を改めて実感しました。 事業分析の視点はどこでしょうか? まず、自社事業別のPLやBSの分析と、各競合企業の分析が必要であると感じました。当社はビジネスモデルの異なる複数事業の複合体であるため、各事業の価値創造プロセスの違いを意識した分析が求められます。この考え方で競合企業を調査していくことにも意義を見出しています。 利益上昇の理由は何でしょうか? また、売上総利益が前年比で大幅に上昇しているため、その要因を特定する必要があります。ここで注目すべきは売上原価です。原価は売上に直結する支出であるため、まずは売上構成の詳細やその推移を把握し、その上で原価の中身を詳しく調査することが基本になると考えています。 情報整理はどう進めるのでしょう? さらに、必要な社内データが複数のシステムで管理されている現状では、情報の整理が不可欠です。すぐに必要な情報にアクセスできるシステム環境が整えば、より迅速かつ正確な分析が可能となり、大いに業務改善につながると期待しています。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

戦略思考入門

顧客目線で差別化を進める新戦略

顧客目線はどう考える? 差別化を考える際には、まず顧客視点から捉えることが重要であると学びました。これには、実現可能性や競合が真似しにくいこと、そして持続性も考慮する必要があります。ワークを通じて、顧客目線での視点が不足しがちであったことに気づきました。具体的には、競合は必ずしも同じ業界に限らず、施策にかかるコストも無視できません。 自社の強みは何か? 私は現在、施設管理の業務に携わっていますが、これまで会社全体として自社の強みを言語化したことがありませんでした。このため、VRIO分析を用いて、会社全体および所属部門の強みを整理することにしました。また、同一業界で似たような事業を展開する企業は競合として認識していましたが、顧客視点で自社の競合を見直す必要があると感じました。そのため、競合が展開するサービスを分析し、自社の差別化や新規サービスの開発に役立てようとしています。 新戦略はどう描く? 現在展開しているサービスについて、完全に新しい打開策が求められる状況です。このため、顧客目線を重視した視点で、競合調査やサービス分析に取り組むことが急務です。来週には社員を集めて重点課題のアイデア出しを行う場を設けています。その前に、顧客が誰で、顧客目線で競合がどこにあるのかを明確にした資料を作成し、社員の共通認識を整えた上でアイデアを出す予定です。

クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

アカウンティング入門

カフェ体験で学ぶ損益の秘密

カフェの例は何を示す? カフェという身近な存在を例に学べた内容が、より具体的にイメージできる形で伝わり、理解が深まりました。また、損益計算書が5つの利益から成り立っていることを再認識しました。それぞれの利益の意味や役割が異なり、本業の儲けと全体の収益では扱いも違うと理解していましたが、図解によって言葉と概念が結びついた点が非常に印象に残りました。会社の収益源やそれを生み出すための努力を、ストーリーとして考えられることの大切さも学びました。 PLと赤字はどう見る? 業務においては、海外子会社の管理業務の中で毎月のPLを確認し、5つの利益がどのように変動しているかを前月比や前年比で把握し、変化の要因を分析できる力を身につけたいと考えています。また、動画の冒頭で触れられていたように、「赤字」と一口に言っても、最終赤字なのか営業赤字なのかで意味が大きく異なるため、議論の際に速やかに用語の意味を理解できるようになりたいと思います。 数値比較で何が分かる? さらに、苦手意識を克服するために、まずは数値の動向をしっかり把握することが重要だと考えています。自社のPLだけでなく、他社の数値にも目を向け、5つの利益の動きを比較することで、自社子会社のPLにおける違いや問題点、特に各利益間の差に起因する問題を具体的に分析できるようになりたいです。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

クリティカルシンキング入門

問いが変える未来のカタチ

どんな問いが大切? クリティカルシンキングの講義を通じて、問いの重要性を再認識しました。自分や他者の考えを鵜呑みにせず、常に「本当か」と問い続けることで、従来の経験や考え方の偏りを避け、より広い視点から物事を考える必要性を感じました。 どの問いに向き合う? また、ものごとを深く考える際は、まず「今、どの問いに向き合うべきか」を明確にすることが大切だということが印象に残りました。答えや解決策に飛びつく前に、問題や課題の本質をじっくり捉えることで、正しい判断や効果的な解決策に繋げられると理解しています。 チーム作りで気づいたことは? 私は、チームの管理職として、4月以降の体制構築に取り組んでいます。各管理職やメンバーの意見や課題を参考にしながら、チームの体制作りを進める中で、表面的な意見だけではなく、その背景にある真の課題を捉えることの重要性に気づきました。対症療法に終始せず、根本的な解決へと導くためにも、問い続ける姿勢が不可欠だと考えています。 背景をどう探る? 今後は、各管理職やメンバーの意見に対して「なぜそうなのか」を問い、様々な立場から背景や潜在する課題を分析していく予定です。その上で、分析した課題をイシューとして整理し、管理職間で共有しながら議論を進め、体制構築に活かしていきたいと思います。

クリティカルシンキング入門

切り口で解く学びと発見

どう分解する? データを分解して理解するためには、対象を個々の要素に分けることが重要です。特に、When、Who、Whatといった切り口を活用することで、分析がスムーズに進むと感じました。問題に直面した際には、まずこれらの視点に当てはめることを意識する点が良いと思います。 分析は広がる? 今回の総評では、具体的な手法としてWhen、Who、Whatを用いながらデータを分解するアプローチが評価されています。さらに、より多角的な視点を持つことで、分析の幅が一層広がる可能性があると感じました。 他の切り口は? また、思考を深めるための問いとして、WHO、WHAT、WHEN以外にどのような切り口が考えられるか、またMECEに分解する際に意識すべきポイントは何かといった疑問が提示されました。これらの問いかけは、多面的にデータを観察する習慣を身につける上で大切だと考えます。 管理法はどう? プロジェクト管理においても、この手法は進捗管理や不具合管理に活かせるでしょう。既に使用しているツールの補助として、まずはWhen、Who、Whatを当てはめることを意識し、課題の抽出に役立てることができます。また、グラフ化も可能なデータ収集を心がけ、評価のポイントを事前に決めることで、より効果的な分析が期待できるでしょう。

「分析 × 管理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right