データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

データ・アナリティクス入門

比較で見える!分析力の向上への道

正確な分析を行うには? 分析においては、まず比較が重要です。そのため、目的を明確にし、適切な比較対象や基準を設定することで、正確な分析が可能になります。データはただ加工すれば良いというものではなく、それぞれのデータの種類に応じた適切な加工方法や見せ方を考える必要があります。分析を始める前には、目的と仮説を確認することが重要です。 ゴールの明確化が成功の鍵? プロジェクトの進捗管理では、各マイルストーンやゴールを明確にし、進捗を把握するために必要な情報を整理しなければなりません。また、各タスクの進捗状況を可視化するためには、適切なデータ加工が求められます。これにより、課題をより効率的に把握できます。 早期検出につなげるには? プロジェクトの進捗状況を確認するためには、分析に必要なタスクや情報を特定し、各タスクの進捗を定期的に把握することが大切です。さらに、各タスクの進捗が他のタスクにどのように影響するかを知るために、適切なデータの収集と加工を行う必要があります。これにより、プロジェクトの課題を早期に検出したいと考えています。

アカウンティング入門

P/LとB/Sで学ぶ実践的経営分析

比較モデルの新たな発見とは? 実在の企業をモデルにした比較は、これまでのカフェ比較に比べて非常にリアリティがあり、面白く取り組むことができました。ただ、P/L(損益計算書)とB/S(貸借対照表)を別々の企業で行うのではなく、同じ企業のP/LとB/Sを同時に見ることで何か傾向を学べれば、より良かったと思います。 P/L活用の具体的方法は? 直近では、自社全体での活用は大きすぎるため、まずは自部門のP/Lを閲覧する際に今回の学びを活かしていきたいです。自部門のP/Lは管理会計であり、財務会計ではないので、今回学習したP/Lと構造が異なります。そこで、一度学習したP/Lに合うように成型し、数字の管理に慣れていきたいと考えています。 数字管理の重要性とは? 現在、私はまだP/Lを直接管理したり、それを基に分析を行ったり、分析を立案する立場にはいませんが、いつでもその業務に携われるように数字の管理に慣れておくことが大切です。他部門と比較して何が違うのかを分析し、必要な改善箇所と具体的な対策を立案していきたいと思います。

データ・アナリティクス入門

数字で読み解く理想への挑戦

現状と理想のギャップは? 現状と目指すべき姿、そのギャップを定量化することで、問題の「what」「where」「why」「how」が見えてくるという点が非常に印象に残りました。データ分析においては、現状との比較が特に重要であると感じています。 変数分解で何が分かる? 私自身、高校教諭として進路指導や生徒募集の現場で数値データを扱う中で、あるべき姿と現状のギャップ、あるいは現状となるべき姿のギャップの数字の解像度が低いことに気が付きました。そのため、まず変数分解を行い数字の解像度を高め、さらに層別分解を実施することで、「what」「where」「why」「how」に基づいた打ち手を模索していこうと考えています。 共通認識はどうできる? また、最初のステップとして、あるべき姿やなるべき姿に関する共通認識を管理職と共に形成することが重要だと思いました。現在の組織は、具体性に欠ける曖昧なビジョンしか持っていないため、この点を改善することで、変数分解や層別分解に基づく詳細なアプローチを始めることができると感じています。

データ・アナリティクス入門

データ分析でチーム力: 組織全体を強化する方法

仮説検証の重要性とは? 目的に基づいて仮説を立て、データを収集し、その仮説を検証するサイクル(プロセス)に視点とアプローチを加え、データを読み解くこと。その際、代表値を用いる場合、判断方法には多くの選択肢があり、散らばりも含め、目的やデータ自体に合わせて使い分けることが重要です。また、平均は外れ値に弱いことを忘れず、必要な対処を行うことが大切です。 成績把握のポイントは? 日次や月次ごとの担当者間の成績や能力を把握・分析する際には、課内メンバー間の横比較や個人の推移を確認します。その際、外れ値に注意しながら平均値を用いるのは有効です。これにより、適切な組織の人材配置や各担当者の対応許容量の検証・分析が可能となります。 組織全体の課題解決方法は? 担当者間の成績を日次や月次ごとに分析することで、横比較や個人の進捗を把握し、組織全体の課題解決の促進に向けて適切な手を打つタイミングや個人の対応許容量をデータで分析します。適切に個々の許容量を管理することで、弱点の強化策や適材適所の人材配置の判断材料として活用します。

アカウンティング入門

数字に迫る!企業評価の極意

財務三表の意味は? 業務で使用していた財務三表が、事業活動の全体像を把握し定量的に評価するためのツールであると再認識できたことは、有意義な学びでした。この経験を通して、企業評価の際にどこに着目すべきか、さらに深い理解が必要だと感じています。 管理や説明はどう? また、管理職として自社やチームの現状把握、さらには今後の方針検討に活かすことも目指しています。同時に、コンサルタントとしてクライアントに対し、定量的なデータだけでなく図表などの補助資料を活用し、より分かりやすく説明できるよう工夫することにも努めたいと考えています。具体的には、週次のレポートにおいてアカウンティング視点からの項目追加や精度向上を図るなど、数字の裏付けに基づいた分析を進めていく予定です。 分析をどう進める? 全体として、財務三表の再認識は、企業の強みや弱みを見極め、成長性や安定性を判断するための新たな視点を獲得する良い機会となりました。今後は、具体的なケースを通じて各財務表の評価ポイントを整理し、実践的な分析手法を身につけていきたいです。

データ・アナリティクス入門

学びを動かす日常の工夫

A/Bテストの意義は? A/Bテストの存在を知ることができ、業界ではそのような視点があまりなかったと感じました。また、week5はこれまでの中で一番難しく感じました。グループワークでAIの活用を聞いていたので、実際に少し取り入れてみました。動画で指摘されていたように、日常生活の中でこうした思考や手法を実践することが、身につけるために重要だと痛感しました。 転職と時間管理は? プライベートでは、転職の検討や残業削減の工夫、高額な商品の購入を見据えた時間の使い方について考えています。例えば、まずはどの仕事にどれくらいの時間がかかっているかを計測することから始める予定です。 研修と目標達成は? 一方、業務面では、研修担当として対応できる研修の分類や不足している部分を調査し、人材育成モデルとの紐づけを行いながら、研修内容の過不足を確認しています。また、年間計画の検討や売上目標達成に向けた具体的な行動計画の作成、社内合宿のアンケート結果の分析にも取り組んでいます。

データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

アカウンティング入門

業界別損益計算書の秘密に迫る

損益計算の変化は? 事業のコンセプトが違うと、損益計算書の構造が変化することを学びました。特に印象に残ったのは、最後の動画で自動車業界とクラウドサービス業界の事例を見たときです。これらの業界では、売上原価率が低くても販管費率が高くなることがあり、事業構造や企業の成長段階によって一概には判断できないことが明らかでした。 費用の偏り、知りたい? 私は特に、売上原価や販売費および一般管理費のどちらに費用が偏っているのかを知りたいと考えています。そのために、各業界の状況を考慮しつつ、関連する事業構造や費用構造を仮定し、現在支援している顧客企業の分析に活かしたいと思っています。 営業戦略はどうする? 具体的には、売上原価率や営業利益率、販管費率などについて、なぜ業界よりも高いのか低いのかを想像し、顧客企業に質問してみます。そして、会社の先輩方に相談しながら、業界や職種ごとの特徴を理解し、営業や提案の際に活かせるようにしたいです。

アカウンティング入門

他社比較で見つける経営のヒント

他社比較は必要? 自社のみの損益計算書では、単純にいくら稼ぎ、いくら使い、最終的にどれだけの利益が出たかという事実しか把握できません。しかし、適正な運用状況やどこに資金が使われているかを分析するには、他社との比較が必須であると感じました。他社と比較することで、利益率が高いか、原価率が低いかなどがより明確に判断できるのではないかと考えています。 差別化の方針は? また、担当している企業分析の際に、他社との比較から気づく点や自社のブランドポジショニング、競合との差別化要因をピックアップし、より高い利益率を実現するためにどの部分を削減すべきかを検討していきたいと思います。 原価の変動は? さらに、競合企業の分析と自社の過去のPLとの比較により、原価部分、販管費やその他一般管理費がどのように変動しているのか、また営業外費用に具体的にどのような項目が含まれているのかを詳細に確認することで、新たな気づきを得られると考えています。

アカウンティング入門

経営安定の鍵を握るBS活用法

経営の安定性をどう学ぶ? BS(貸借対照表)の理解を深めることにより、経営の安定性と持続可能性の確保がいかに重要かを学びました。特に、事業目的に沿った資産への投資と負債管理のバランスは、経営の鍵を握ると実感しました。借入を活用する際には、その利用目的や返済計画を明確に立てることが重要です。過度な負債はキャッシュフローを圧迫し、経営の自由度を下げる一方で、必要な投資を怠ることは競争力の低下につながります。慎重な判断が求められると考えます。 持続的成長へのステップは? さらに、BSを活用して事業の成長性や財務の健全性を評価することの重要性を再認識しました。資産の流動性や負債の返済スケジュールを見ながら、利益をどのように再投資するかを検討することが、持続的な経営には不可欠と学びました。今後は、BSの分析を通じて、適切な投資判断を下し、リスクを抑えながら成長を促進することを意識して学びを深めていきたいと思います。

「分析 × 管理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right