戦略思考入門

挑戦と実践の成長ストーリー

どんな効果が期待? 新たな取り組みを実施する際には、まずコスト対効果を十分に考慮し、周囲の人々を巻き込んだ計画作りを行います。既存のノウハウや取り組みとのシナジーを見出すことで、より一層効果を高める工夫も大切です。また、現状を定量的に把握し、計画実施後に数値がどのように変化するかを予測することで、計画の有効性を具体的に見える化することが求められます。さらに、部門長や経営者の視点に立ってアプローチを考えることで、戦略全体の見直しにつなげることができます。 現場で何を議論? また、具体的な課題解決の現場では、人材育成、品質向上、業務効率化などに関する検討会で各施策を議論します。来年度に実施する中期経営計画では、目標設定、現状分析、課題の抽出、そしてKPIの設定が重要なステップとなります。これらを踏まえた上で年度ごとの取り組みを具体的に計画し、同僚や部下と連携して年度目標の達成に向けたマネジメントを実行していきます。 優先順位はどう? さらに、限られたリソースを有効活用するためには、優先順位の付けや不要な取り組みを削ぎ落とす意識が不可欠です。部下全員の取り組み状況を毎月トレースできるよう、簡易な確認体制を整えることも重要です。たとえば、係長に取りまとめを任せ、課題を報告してもらう仕組みがあると、係長のマネジメント力が向上し、その結果、上位者がより高い視点で戦略を考える時間を確保できるようになります。こうした仕組みが整えば、初期段階での気づきを着実に実践に移す余裕が生まれ、全体の効率も向上するでしょう。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

データ・アナリティクス入門

歩みと気づきをつづる学びの記録

現状は何を示す? 問題解決のプロセスでは、まず「What:問題の明確化」から始め、現状とあるべき姿のギャップを把握します。現状を定量的な数値で示し、関係者間で共通認識を持つことが重要です。取り組むべき問題は、単なる異常事態の解消だけでなく、目指すべき姿へ到達するためにも活用できます。 どこに問題が潜む? 次に「Where:問題個所の特定」に進みます。ここでは、Whatの段階で整理した構造を基に、具体的な問題箇所を抽出します。たとえば、売上の構造を「客数×客単価」といった形で分解することで、問題所在を明確にすることができます。 なぜ原因を探る? 「Why:原因の分析」では、特定した問題箇所をさらに下位概念に分解し、具体的な原因に迫ります。詳細な原因把握は、問題解決のための重要なステップとなります。 どう取り組む解決策? 最後に「How:解決策の立案」を行い、制約や条件を踏まえた上で効果的な対策を導き出します。各ステップを順に辿ることで、全体像を把握しながら解決策を組み立てることが可能となります。 どうしてツリーを活用? また、クライアントから抽象的な課題が事前に提示されることが多いため、ロジックツリーを作成して情報を整理することが効果的です。全体の流れや解像度を上げることで、関係者間の認識合わせがスムーズになり、感度の良い切り口を見つけやすい環境が整います。案件のキックオフ時には、まず自分なりにロジックツリーを構築し、可視化することでその効果を実感できるでしょう。

アカウンティング入門

数字が語る経営戦略の秘密

収益活動の意図は? オリエンタルランドのケーススタディを通して、その企業が収益を上げるためにどのような活動を行い、その活動が現金の流れにどのように影響を与えているかを分析する重要性を改めて実感しました。特に、人件費が一般的な製造業とは異なり、直接売上に貢献するという考え方に基づいて「売上原価」に含まれている点が非常に興味深かったです。また、災害時のリスクマネジメントとして現金を一定量保有していることが、B/S上に反映されている点も印象に残りました。 戦略策定の秘訣は? 自社の中期経営計画策定にあたっては、まず自社の数字を整理し、競合他社との違いを明確に分析することから始めようと考えています。同時に、他業種のP/LやB/Sを参考にするとともに、異なるビジネスモデルや戦略について学ぶことで、自社の戦略に新たな視点を取り入れる可能性にも期待しています。これまで自業界内での考え方に偏りがあったことを反省するとともに、外部の事例から新たな発想が生まれるかもしれないという期待感があります。 会計と戦略はどう? 今回学んだ内容を実際のビジネスに活かすためには、B/SやP/Lの概念とその戦略への結びつきを深く掘り下げる必要性を痛感しました。まずは、会計と戦略の紐付きを理解できる書籍を用いて独自に勉強し、社内でこれらの知識に詳しい方との意見交換を積極的に進めることで、単なる知識としてだけでなく、実際の経営にどのように活用できるかを自分の中にしっかりと定着させていきたいと考えています。

戦略思考入門

データが照らす捨てる勇気

なぜ実践が苦手? この講座では「戦略における捨てるを身につける」という内容が特に印象に残りました。以前からその考え方に触れていたものの、講座を通じて実際の場面でこの手法を適用する必要性を改めて実感し、自分自身がその実践を苦手だと感じていた理由にも気づかされました。 批判とデータの意義は? 「捨てる」という行動は周囲からの批判を恐れるケースが多く、自分がこれまで培ってきたものを変えるリスクと捉え、避けたくなる部分があると感じていました。しかし、グループディスカッションでは「捨てる」の代わりに、定量的なデータに基づいて選択するというアプローチが紹介され、トレードオフの視点を取り入れることで、これまでの取り組みを付け加える形で活かす方法もあるのではないかと学ぶことができました。 職場での製品挑戦は? 自身の職場では、従来の製品とは異なる新たな製品開発が求められており、「新しいことを行う=変化する」がしばしば批判の対象となる状況があります。そこで、まずは客観的なデータに基づいた判断が重要だと感じています。今後は、常にデータで分析できる体制を整え、メンバーにその意識を共有して、定量的な視点から取捨選択を行いながら業務を進めていきたいと思います。 連携の必要性は何? 仕事は一人で完結するものではないため、日常的なコミュニケーションの重要性を実感しています。皆さんも、周囲との連携を図るために日頃からどのような工夫をされているのか、ぜひ教えていただきたいです。

戦略思考入門

フレームワークで読み解く経営戦略

戦略思考はどう身につく? 3C分析、SWOT分析、バリューチェーン分析のEラーニングは今回で2回目となります。以前、グロービスの書籍も2度ほど読んでいましたが、職位や業務内容の変化を受け、戦略的な思考をより一層身につけたいという強い思いから再度学ぶこととなりました。改めてフレームワークに基づいて考えることで、行き当たりばったりではなく、全体像を網羅的に把握できる点を実感しました。特に、今はこれまで以上に経営的な視点で、二手先、三手先、あるいは将来戦略を意識し、限られたリソースの中で包括的な課題解決を図る必要性を感じています。そのため、実践の中でこれらのフレームワークを確実に身につけていきたいと考えています。 品質保証に未来は? 製造業における市場品質保証業務については、一見、即効性のあるビジネスに結びつきにくいように映ります。しかし、品質保証は短期的にはコスト削減に、長期的にはブランド力向上に寄与する重要な役割を担っています。3C分析では、市場や顧客から見た品質の視点、競合他社との品質コストの差、そして自社の強み・弱みの整理が求められます。また、SWOTやPEST分析を通じて、DXやAI技術など新たな技術動向やグローバルな環境の変化を把握し、現状を明確にすることが可能です。加えて、バリューチェーン分析によって、取引先や自社内での問題を定量的に検証し、時間やコストがかかっているプロセスを洗い出すことで、今回学んだ知識を具体的な業務上の改善に活かすことができると感じました。

データ・アナリティクス入門

ChatGPTで学びの視点を拡張する方法

ロジックツリーとMECEの限界は? ロジックツリーやMECEを使って考えると、一人での作業では思考に癖が出て、洗い出しが不十分だったり、偏った視点になりがちです。しかし、CHATGPTを活用することで、自分とは異なる視点から「漏れなく」洗い出せる可能性が高まることを実感しました。実際、学習の際にCHATGPTを利用した結果、より早く自分なりの答えに近づくことができました。 定量分析の視点の活用法は? 定量分析の5つの視点については、普段何気なく行っていたことが体系化されていることに気づきました。データ分析を行う際には、どの視点が最適か常に立ち止まって考えるようにしたいと思います。 CHATGPTの効率的な利用方法は? また、問題を洗い出す際にCHATGPTを活用することで、様々な視点から効率的に問題点をリストアップできるようになりました。以前はこの作業に多くの時間を費やしていましたが、CHATGPTの登場により時間的コストが大幅に削減されました。学習ではコストと見合った洗い出しが重要だと教えられましたが、短時間で漏れなく洗い出すことを優先すべきだと感じています。 独自プロンプトの効果は? さらに、問題の洗い出しをスムーズに行うために、自分独自のプロンプトを考案しました。問題洗い出しの場面では、そのプロンプトを使って多様な視点から問題をリストアップすることを徹底しています。また、このプロンプトは従業員にも共有し、同じような場面で活用してもらうようにしています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

クリティカルシンキング入門

実践で磨く分解の極意

全体像はどう把握? 本講座では、全体をしっかり定義した上で作業を進める重要性を実感しました。まず全体像を捉えることで、分解の作業がスムーズになり、全体に漏れがなく整然とした分析が可能だと感じました。 MECEは何を意味? また、分け方においてはMECE(抜けや重複がない)を常に意識することが大切だと学びました。例えば、単に「若者」や「リピーター」といった大雑把なカテゴリーで分類してしまうと、定義が曖昧になり、漏れやダブりが発生する可能性があるため、年齢や来店頻度など定量的な指標を用いることが有効です。 複数切り口は有効? さらに、仮説を持ちながら複数の切り口でデータを分類する手法には大きな意義を感じました。年代を10代ごとに分ける方法や、学歴など別の視点で区切る方法など、異なるアプローチを試すことで、より実態に即した傾向を掴むことができると感じました。 視覚チェックで見える? 加えて、図を描くなど視覚的な手段を用いてチェックすることで、直感だけでは気付けなかった課題を明確にできる点にも非常に参考になりました。最終的には、分けた後に「本当にそうか?」と問い直すプロセスが、より深い理解と洗練された分析に結びつくと実感しています。 実践から何を得る? 最後に、考える前にまず実際に分けてみることの大切さを学びました。実践を通じて自分自身の仮説を検証し、新たな視点を得るプロセスは、今後の分析活動に大いに役立つと感じています。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

データ・アナリティクス入門

ボトルネックを見える化するプロセス分析の力

プロセス分解で何が見えた? プロセス分解を通じて問題の原因を明らかにすることが非常に印象に残りました。実際には、ある程度理解しているつもりになってしまうことが多いため、この方法にはハッとさせられました。プロセスを分解し、フェーズ毎の定量データを比較することで、ボトルネックが見えることがわかりました。特に採用プロセスとの親和性が高いと感じました。 A/Bテストの限界を考える A/Bテストについて、一要素ずつ検証を行う方法が紹介されましたが、実際には一要素だけで結果が大きく変わることは少ないのではないかと疑問に感じました。 採用データの深掘りが重要 採用プロセスや学生の動向を分解し、どの段階で歩留まりが多いのか定量データを用いて検証していきたいと感じました。また、顧客の採用ホームページを作成した際、その後どのくらいの人がサイトを訪れ、クリックされているのか、実際に応募につながった人数(コンバージョン率)についても調査していきたいと思いました。 来年の採用戦略とは? さらに、顧客企業の採用プロセスを分解し、プロセス毎の参加数、辞退数、新規流入数などのデータを検証することが必要だと感じました。ボトルネックの原因を考えた上で仮説を立て、学生の志向性や市場全体の動きと比較することが重要です。その上で、来年の採用に向けてどのような行動を起こす必要があるかを考え、すぐに軌道修正ができる場合は速やかに行動に移したいと思います。
AIコーチング導線バナー

「分析 × 定量」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right