データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

デザイン思考入門

本音に迫る新人研修の裏側

研修の成果はどこで感じる? 新人研修企画に向け、複数の社員に対してオープンエンドな質問を行い、今年1年の振り返りや研修会に対する印象など、豊富な定性的情報を引き出すことができました。中には「正直覚えていない」「配属されてからでないと分からない」といった回答もあり、知識のインプットは十分ながら実体験が伴わないため、研修がその場限りになっているという共通の課題が浮かび上がりました。 調査の難しさは何だろう? 一方、調査自体はまだ始まったばかりですが、対象者自身が気づかないような暗黙知にまで踏み込むのは非常に難しいと感じました。自身の仮説を提示し、それに対する意見は得られるものの、一歩踏み込んで本音の課題を引き出すためには、相手の領域やコミュニティに深く入り込む必要があると実感しました。 定性分析の説得力はどうする? また、定性分析はどうしても恣意的なまとめ方になりがちで、説得力に欠けるという懸念がありました。これに対して、定量分析で明らかになった結果は一般的すぎる面があるため、数値以外の情報を加えた上で、定性的な情報の根拠として定量データを補完的に用いることで、より説得力の高い分析が実現できるのではないかと考えるようになりました。

データ・アナリティクス入門

基礎定着から実務戦略への挑戦

ライブやグループの難点は? WEEK6のライブ授業では、WEEK1からの振り返りができたものの、まだ基本的な知識が十分に定着していないと感じました。グループワークで自分の意見を述べる際、思いついたことをうまく言葉にできず苦労した場面もありました。「分析は比較なり」や「視覚的にデータの効果的な見せ方」といった考え方の重要性を再認識し、基本的な知識の定着と実務での活用を継続して、熟練度を高めていきたいと思います。 分析と戦略はどう? 私は現在、グループ全体および各店舗のデータ分析や戦略策定を担当しており、来年度の計画立案の時期に入っています。今回の学びを最大限に活用し、戦略立案や目標設定に反映させるとともに、各店舗でのデータ収集、分析、そしてそのデータに基づく戦略立案に生かしていく所存です。 次の学びはどう進む? 今後は、データアナリティクス入門で学んだ知識をしっかり定着させるため、「定量分析の教科書」を活用して理解を深め、実務での活用を通じて実践力を向上させていきます。また、4月から受講するクリティカルシンキング入門を通して、客観的かつ多角的、論理的な思考力を養い、データ分析や戦略立案に役立てたいと考えています。

戦略思考入門

選択と差別化の成功と失敗を学ぶ

どうして失敗を重視? 規模の経済や多角化について、成功例だけではなく失敗例も学びました。「なんとなくよさそう」という選択肢に飛びつかず、「うまくいかないケースはないか?」を意識して確認する必要があると感じました。 補足はどう工夫? 総合演習では、情報が足りない時にどのように補うかを考えながら取り組みました。日常生活でも、安易に選択してしまうことがあるのかもしれないと感じました。選択するかしないかを広い視野でとらえ、その背景を分析し、メリットとデメリットを正確に把握する必要があります。 どう差別化実現? 現在取り組んでいるペーパーレス推進の中では、「捨てる」ことと「他社との差別化」を両立する施策を意識しています。業界内の動向だけでなく、他業界での先行事例も注視しています。「なんとなくよさそう」で判断せず、定量的データを用いて根拠のある提案を行うよう努めています。 何を見極める? 定量的データを活用し、同業界だけでなく他業界の事例も広く集め、自社に活用できる部分がないかを検討しています。その際、自社の差別化につながるかどうかという視点を重視しています。また、ペーパーレス実現後の影響も考慮した施策を構築しています。

アカウンティング入門

アカウンティングで広がる新たな視点

アカウンティングの理解を深めるには? アカウンティングの重要性や、事業活動の意味、事業活動を定量化する指標について、今まで漠然と理解していたことがしっかりと言語化され、体系的に整理されました。これにより、頭の中にフレームが形成され、とてもすっきりとした気持ちです。このフレームに情報や知識を加え、自分の中で考えを整理していくのが非常に楽しみです。 自社のP/LとB/Sをどう活用する? まず、自社のP/LとB/Sを読み解けるようになり、俯瞰的な視点で自部署や他部署の事業活動を再考したいと考えています。その後、競合他社のP/LやB/Sを分析し、自社と比較することで、改善や成長のポイントを見つけたいです。 理解を深めるためのアプローチは? 本講座を通じて、すべての内容をしっかりと理解し、疑問点がない状態で修了したいと考えています。その上で、自社のデータを読み解く際に生じる不明点については、上司に相談したり、質問の機会を作りつつ理解を深めたいと思います。競合他社の分析に関しては、特定の企業をピックアップし、理解を深めたいです。また、アカウンティングに詳しい周りの方々に声をかけ、比較検討会の実施を提案したいと考えています。

データ・アナリティクス入門

データ分析で実務力を即戦力に!

データ分析の基本を見直す データ分析の基本的な考え方として、「データ分析は比較である」、「データをどのように加工すると分かりやすいかを考える」、「データ分析の目的を明確化する」ことが重要であると認識しました。これまでの自身の業務を振り返り、反省しつつ、今後のデータ分析においてはこれらを忘れずに取り組むことが大切だと考えています。 どのように実績データを活用するか? グループ各店の業務実績データ(定量・定性)の分析を通じて、それぞれの店舗の課題を抽出し、傾向を把握します。そして、課題解決に向けた戦略を立案する際には、データアナリティクス分野で学んだ知識を活かしたいと思っています。 学習した知識を実務にどう活かす? この科目での学習を継続して実務に活かすためには、セミナー視聴やグループワークだけでなく、自主学習を行い、習熟度を高めていくことが必要です。そこで、平日の早朝30分から1時間、そして週末にも学習時間を確保し、理解を深めていく計画です。また、実業務においては、6週間後に学びきるまで待つのではなく、WEEK1から学んだことを即座に業務でアウトプットする意識を持ち、実践力を向上させたいと考えています。

デザイン思考入門

小さな会話が未来を変える

暗黙知が示す問題は? 既存業務では、表面的には問題が見受けられなくても、暗黙知により不便さが隠れている可能性があります。そのため、ユーザーが大雑把に抱える課題を観察しつつ、定性分析を使って解決策を見出す必要があると感じています。まずは、現場をしっかり確認し、困りごとを持つ人がいないか探すことを心がけたいと思います。 仮説は有効か? また、自分自身が業務に追われ、常に周囲を見る余裕がなかったことも実感しています。そのため、あらかじめある程度の仮説を立てることが重要だと考えています。チームメンバーからは、偶然の会話の中で困っている点が見つかる場合があると聞いており、日常的にいろいろな人と話をするよう努めるつもりです。 分析手法はどう変わる? 今回の学びでは、暗黙知と定量分析の双方が大きなポイントとなりました。さらに、コーティングの手法を習得できたことで、これからはアンケートやインタビューで得た情報をコーティングする習慣を身につけたいと考えています。現在は生成AIの活用により、簡単にコーティングが可能となっているため、その点を意識しながらアンケート結果の分析にも取り組んでいきたいと思います。

マーケティング入門

マーケティングで顧客満足を追求する旅

マーケティングの本質とは? マーケティングについて考えると、以前よりも広い意味を持つように感じていますが、本質的な顧客志向や顧客満足という点は、時代が変わっても変わらないと捉えています。マーケティングを考える際には、常にこれを念頭に置いていきたいです。 顧客満足を追求するには? 私の勤める会社も、昔から顧客を大切にすることを最重要視しています。ただし、接客だけでなく、より本質的なお客様の満足やインサイトを意識し、提案の際に活かしていくことが求められています。そのためには、素晴らしい商品を作ることよりも、顧客が本当に求めている商品やサービスを提供できるように、分析力を身につけ、高い視点から提案できるようになっていく必要があります。 定量化できない満足度への挑戦 顧客理解を深めるための方法やその数値化を手法として習得することに努めるつもりです。また、定量化が難しいイメージや口コミの分野で、納得感の持てる提案を行うためには、常に批判的思考を意識するようにしたいです。そのため、他者に提案資料の確認をお願いしたり、フィードバックや顧客の声を積極的に聞くこと、確認する習慣をつけることが大切だと考えています。

クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

データ・アナリティクス入門

見方ひとつで変わるデータの魅力

定量と定性はどう違う? 曖昧な依頼は何が問題? 定量データと定性データは、普段何気なく扱うものですが、実際には全く異なる情報だと実感しました。データ分析を進める際、曖昧な依頼で「とりあえずざっくりで」と指示してしまうことがよくあります。しかし、授業を通じて、何を知りたいのか、何を明確にする必要があるのかをあらかじめ仮説として立て、分析を進める重要性を再認識しました。 顧客情報はどう読む? 市場の声を捉えている? また、日常的に目にする商品開発や研究での顧客情報、市場ニーズといったデータも、単に眺めるだけでは業務に活かしきれていません。これからは、得られた情報から今後の方針を明確にし、必要な開発や提案に結びつける取り組みを進めていきたいと考えています。 グラフ化は何を示す? 話し合いはどんな効果? 普段の情報をただ見るのではなく、グラフ化するなどして多角的にデータを俯瞰し、チームメンバーとのディスカッションの機会を設けることが必要だと感じました。データ分析の楽しさや、他者へ説明し理解してもらえることで生まれる信頼関係も、業務を円滑に進めるための大切な要素だと実感しています。

データ・アナリティクス入門

ばらつきで読み解く学びの軌跡

なぜばらつき重視? データ全体を把握する中で、ばらつきに注目する重要性を再認識しました。要因分析を行う際、ばらつきを理解することで特定の傾向や変化の大まかな枠組みを捉えられる可能性があると感じます。普段は個別案件や特定のセグメントに意識が向きがちですが、基本的な統計の観点として必ず押さえておくべきだと思いました。また、ばらつきの程度を数値的にどの差や変化として捉えるのが有効かについても関心を持ちました。 営業データの本質は? 例えば、自社の営業データでは、長期的なトレンドは大きく変わらないという認識があり、特定の年度に限った動きが見られなければ大幅な変化はないという思い込みがありました。基本統計としてのばらつきを正確に把握することとともに、数値の背後にある実務上の変化を探るため、定量データだけでなく定性情報にも着目しようと考えました。 分析軸は見直すべき? さらに、データ分析の軸を改めて設定し、その意味を整理する必要性を改めて感じました。特に、データに見られるばらつきが、営業活動の現状を示す行動や外部要因の影響をどのように反映しているのかを把握することが大切だと実感しました。

「分析 × 定量」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right