クリティカルシンキング入門

平易な言葉で伝えるクリティカルシンキングの力

クリティカルシンキングで学んだことは? クリティカルシンキングの学びで特に印象に残ったのは、平易な言葉で相手に伝える重要性です。立場が違えば、物事の見方や考え方も変わることをケースを通して学びました。私は物事を簡潔に伝えるのが苦手です。その理由を考えたとき、①課題の整理ができていない、②抽象的な言葉のほうが自分にとって伝えやすいという癖があるため、自分の範囲内で考えて専門用語や抽象的な表現を多用してしまうのだと気づきました。 今後どのようにコミュニケーション力を高める? これからは広い視点で分析を行い、誰にでもわかりやすいコミュニケーションを意識していきたいです。上司への提案や業務分析など、思考が必要な場面では大いに活用できると感じました。AIの進歩により、疑問に対する答えは簡単に見つかりますが、条件設定などでの役割はまだ人間の手が必要です。多角的な視点で分析できることで、今まで一つの答えしか考えていなかった現状を変えていきたいと思います。 さらに、簡潔でわかりやすい伝え方を意識し、提案やコミュニケーションをスムーズにしていきたいです。そのために次のことを意識して行動したいと思います。①図で示す、②定量的に示す、③専門用語を使わない、④様々なケースを考える、⑤結論から伝える。 自分自身のどのようにアップデートする? これらの意識をもとに行動し、自分自身をアップデートしていく必要があると考えています。ただクリティカルシンキングだけでなく、MBAの基本的な知識や他業種の情報も積極的に取り入れ、多角的な視点を身につけていきます。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

分析を活用した価格設定の秘密

分析の基本とは? 分析とは、比較を通じて事象を理解することです。分析には、数値を基にした定量分析と、事象の背景や流れを検討する定性分析があります。これらの分析は、対象となる要素を分解し、様々な視点から詳細に検討する作業です。重要なのは、データを扱う際に注意が必要であり、異なるものを比較しないようにすることです。すなわち、「Apple to Orange」ではなく、「Apple to Apple」を意識し、見えているものだけでなく、見えていないものも視野に入れながら比較することが求められます。 リゾートホテルの価格戦略 例えば、リゾートホテルにおける宿泊価格の変動を分析する場合、グループ内の直営16施設の過去10年間の売上データを活用することが考えられます。また、旅行サイトの口コミも分析の参考にできます。これらのデータは、特に需要が高まる週末や祝日の売上を最大化するための社内向け資料として活用されます。近年の旅行者数の増加に伴い、これらの変化をデータとして捉えることで、より効果的な意思決定が可能となります。 ダイナミックプライシングの活用 具体的な販売戦略としては、客室は56日前から販売設定されており、分析した資料を元に販売時の価格を提案します。予約の受注数と周辺ホテルの料金を毎週比較し、価格設定の見直しを行います。また、過去10年間の売上データを基に、ダイナミックプライシングを活用して売上が最大化できたかどうかを分析します。このようにして、データ分析を通じて戦略的な価格設定を行うことで、売上の最大化を目指します。

デザイン思考入門

対話で紡ぐ未来への羅針盤

抽象と具体はどう? 定量・定性分析に加え、コーディング分析で述べられた「抽象度と具体化」の相互プロセスが非常に重要だと実感しました。私が実践した活動は、一般募集で参加者を募り「未来デザイン教室」を開催することから始まりました。その後、複数人を対象にマンツーマン・コーチングを実施し、事前のヒアリングシート(属性情報)、ワークシート(ありたい理想図)、オンライン対話の三種類の情報を活用して潜在的な問題点を明らかにし、今後の課題についてアドバイスを行いました。 問題の要点は何? これらの活動では、対話の中で抽象的な表現と具体的な表現を行き来させ、参加者が抱える問題や課題の全体像を共有するよう努めました。具体的な事象や数字に踏み込んで話す人、抽象的にしか表現できない人、あるいは言葉が体言止めに終始して動きのない人など、参加者それぞれの癖が見えてきました。そのため、具体的な発言が多い方には「つまり、要点は?」と問いかけ、抽象的な方には「結局、どんな意味になるの?」と解像度を上げるよう心がけました。この対話の往復により、全体像を俯瞰する視点が得られることが大きな気づきとなりました。 構図をどう捉える? また、定量・定性分析、コーディング、そしてフレームワークやプロセスを通じて「仮説の構図」を把握することができれば、隠れた領域や既存概念の硬直した部分を明確に特定しやすくなると感じました。アイデアが行き詰まった場面でも、課題の構図が見えることで、その構図自体を再構築でき、結果として新たな方向性が見えてくると考えています。

戦略思考入門

捨てる決断が未来を創る

網羅を見直すべき? トレードオフの考え方を学び、すべてを無条件に網羅しようとするアプローチの見直しが必要だと実感しました。時間、費用、品質といった要素を考慮し、あえて不要なものを捨てる決断が、自分自身や組織にとって新たな武器になると考えています。そのため、どの取り組みを採用し、どれを見送るかを、定量的な分析によって判断する能力がこれまで以上に求められていると感じました。 激変時代の整理は? 現代は外部環境が複雑化し、変化が激しい時代です。そんな状況下では、トレードオフの視点で業務を整理することは容易ではありません。しかし、変化の激しい中でこそ、不要な部分を意識的に捨てることが、企業や組織、さらには個人の疲弊を防ぐ上で重要だと言えます。特に、開発業務においては、新規や継続、または中止の判断を明確にすることで、効率的な取り組みが可能になると考えています。 開発判断の基準は? 具体的には、開発の推進可否を決定する際に、固定費を含む開発費に対して、どの程度の収益に結びつくのか、その効果がどれくらいの期間持続するのか、また競争力をどれだけ維持できるのかといった観点から、各項目の価値を明確に見極めたいと思います。さらに、技術ノウハウの蓄積や新技術の探求といった、費用対効果だけでは整理しにくい要素についても、その実現が社会にどのような貢献をもたらすのか、顧客に何を提供できるのか、そして競争上の優位性がどのように確保できるのかを具体的に言語化することで、より明確な優先順位を持って開発を推進していきたいと考えています。

戦略思考入門

挑戦と実践の成長ストーリー

どんな効果が期待? 新たな取り組みを実施する際には、まずコスト対効果を十分に考慮し、周囲の人々を巻き込んだ計画作りを行います。既存のノウハウや取り組みとのシナジーを見出すことで、より一層効果を高める工夫も大切です。また、現状を定量的に把握し、計画実施後に数値がどのように変化するかを予測することで、計画の有効性を具体的に見える化することが求められます。さらに、部門長や経営者の視点に立ってアプローチを考えることで、戦略全体の見直しにつなげることができます。 現場で何を議論? また、具体的な課題解決の現場では、人材育成、品質向上、業務効率化などに関する検討会で各施策を議論します。来年度に実施する中期経営計画では、目標設定、現状分析、課題の抽出、そしてKPIの設定が重要なステップとなります。これらを踏まえた上で年度ごとの取り組みを具体的に計画し、同僚や部下と連携して年度目標の達成に向けたマネジメントを実行していきます。 優先順位はどう? さらに、限られたリソースを有効活用するためには、優先順位の付けや不要な取り組みを削ぎ落とす意識が不可欠です。部下全員の取り組み状況を毎月トレースできるよう、簡易な確認体制を整えることも重要です。たとえば、係長に取りまとめを任せ、課題を報告してもらう仕組みがあると、係長のマネジメント力が向上し、その結果、上位者がより高い視点で戦略を考える時間を確保できるようになります。こうした仕組みが整えば、初期段階での気づきを着実に実践に移す余裕が生まれ、全体の効率も向上するでしょう。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

データ・アナリティクス入門

歩みと気づきをつづる学びの記録

現状は何を示す? 問題解決のプロセスでは、まず「What:問題の明確化」から始め、現状とあるべき姿のギャップを把握します。現状を定量的な数値で示し、関係者間で共通認識を持つことが重要です。取り組むべき問題は、単なる異常事態の解消だけでなく、目指すべき姿へ到達するためにも活用できます。 どこに問題が潜む? 次に「Where:問題個所の特定」に進みます。ここでは、Whatの段階で整理した構造を基に、具体的な問題箇所を抽出します。たとえば、売上の構造を「客数×客単価」といった形で分解することで、問題所在を明確にすることができます。 なぜ原因を探る? 「Why:原因の分析」では、特定した問題箇所をさらに下位概念に分解し、具体的な原因に迫ります。詳細な原因把握は、問題解決のための重要なステップとなります。 どう取り組む解決策? 最後に「How:解決策の立案」を行い、制約や条件を踏まえた上で効果的な対策を導き出します。各ステップを順に辿ることで、全体像を把握しながら解決策を組み立てることが可能となります。 どうしてツリーを活用? また、クライアントから抽象的な課題が事前に提示されることが多いため、ロジックツリーを作成して情報を整理することが効果的です。全体の流れや解像度を上げることで、関係者間の認識合わせがスムーズになり、感度の良い切り口を見つけやすい環境が整います。案件のキックオフ時には、まず自分なりにロジックツリーを構築し、可視化することでその効果を実感できるでしょう。

アカウンティング入門

数字が語る経営戦略の秘密

収益活動の意図は? オリエンタルランドのケーススタディを通して、その企業が収益を上げるためにどのような活動を行い、その活動が現金の流れにどのように影響を与えているかを分析する重要性を改めて実感しました。特に、人件費が一般的な製造業とは異なり、直接売上に貢献するという考え方に基づいて「売上原価」に含まれている点が非常に興味深かったです。また、災害時のリスクマネジメントとして現金を一定量保有していることが、B/S上に反映されている点も印象に残りました。 戦略策定の秘訣は? 自社の中期経営計画策定にあたっては、まず自社の数字を整理し、競合他社との違いを明確に分析することから始めようと考えています。同時に、他業種のP/LやB/Sを参考にするとともに、異なるビジネスモデルや戦略について学ぶことで、自社の戦略に新たな視点を取り入れる可能性にも期待しています。これまで自業界内での考え方に偏りがあったことを反省するとともに、外部の事例から新たな発想が生まれるかもしれないという期待感があります。 会計と戦略はどう? 今回学んだ内容を実際のビジネスに活かすためには、B/SやP/Lの概念とその戦略への結びつきを深く掘り下げる必要性を痛感しました。まずは、会計と戦略の紐付きを理解できる書籍を用いて独自に勉強し、社内でこれらの知識に詳しい方との意見交換を積極的に進めることで、単なる知識としてだけでなく、実際の経営にどのように活用できるかを自分の中にしっかりと定着させていきたいと考えています。

「分析 × 定量」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right