データ・アナリティクス入門

あなたを動かす学びの4視点

本質問題、どう捉える? 今回の学習では、問題解決のための4つの視点――What、Where、Why、How――を意識する重要性を学びました。特に、解決すべき本質的な問題(What)を明確にし、理想と現状のギャップを把握することが、メンバー間の認識のズレを防ぐ上で非常に重要だと感じました。 サービス提供は課題? また、長期的な利益向上のためには生徒数の増加が求められる一方、現状のサービス提供体制ではスタッフへの負荷増大や顧客満足度の低下といったリスクも伴います。これに対し、各講師が対応可能なクラス数や新人講師の育成にかかる期間・コスト、顧客満足度に影響を与える要素など、具体的な定量データを基に現状を整理し、対策の優先順位を明確にすることが必要だと実感しました。 日常業務、どう対処? さらに、日常業務においても、状況把握や効果検証、施策の試算などのプロセスにおいてWhat、Where、Why、Howの視点を取り入れることが重要です。分析開始前にロジックツリーなどを用いて問題の全体像を整理し、関係するメンバーと認識を共有することで、より精度の高い対応策を講じることができると感じました。

デザイン思考入門

ワクワクが生む本当の学び

授業モチベ低下の理由は? 現在の業務では、学生の学業に対するモチベーションの低さが大きな課題となっています。授業アンケートなどの定量分析だけでは、学生の本音を把握するのは難しいため、フランクな環境で直接インタビューを行ったり、授業課題に取り組む姿を観察するなど、定性分析の手法を取り入れることが効果的ではないかと感じました。 内発性向上は可能? 実際に、学業に一生懸命取り組む数名の学生に「なぜそれほど頑張れるのか」と尋ねたところ、ほとんどの場合「単位を取りたいから」や「良い成績を取りたいから」といった外発的動機づけによる回答が返ってきました。これは、彼らが自らの内発的な動機、つまり学業に対するワクワク感の醸成ができていないことを示しており、強制ではなく自主的に学びを楽しむ環境作りが必要であると改めて実感しました。 課題の本質はなんだ? また、「解決すべき本質的な課題を明確にすること」ができれば、課題解決の半ばは達成したと言えるでしょう。しかし、インタビューや観察から本質的な課題を的確に抽出するのは容易ではなく、何度も試行錯誤を繰り返しながら進めていく必要があると感じています。

データ・アナリティクス入門

現状分析で課題解決のアイデア発見!

データの見える化で何が得られる? 常にデータを見える化することで、問題解決のアイディアが生まれやすくなると感じました。例えば、業績の課題に対して財務諸表を見て問題点を見つけたり、ロジックツリーを書いて選択肢を並べてみることは効果的だと思います。 損益以外の問題も解ける? 私は業績管理の部署にいますが、損益に問題があればその問題点の把握の仕方はある程度定型化されてできるのではないかと思っています。しかし、損益以外の業務における問題の把握や発見は難しく、挑戦してみたいと考えています。 まず、あるべき姿の候補をいくつか出し、それに対してギャップがある部分を洗い出します。そして、その要因となるものをロジックツリーにして書き出します。 ギャップをどう埋める? あるべき姿の列挙として、他の事業やプロジェクトから現在の部署に足りていない問題を見つけてみます。次に、ロジックツリーを使って現状とのギャップを可視化し、見えていない部分を明確にします。最後に、定量化を行い、どの項目についてギャップが大きいのか、どの項目に取り組むとあるべき姿に達成しやすいのかを整理します。

戦略思考入門

プロジェクト成功へ向けた分析の旅

新プロジェクトに必要な分析手法は? 新しいプロジェクトの構築段階において、既存事業の来期戦略策定のために3C分析とSWOT分析を実施しようと考えています。プロジェクト開始当初に会話はしましたが、現段階で再度分析を行うことで、本格的な稼働に向けた準備を行いたいと考えています。 活用すべき戦略策定のステップは? また、既存事業の来期戦略については、SWOT分析を通じて外部環境の把握と自社サービスの内部環境の見直しを進めていきます。担当として、過去の定量データの調査が必要なため、分析のための情報収集を開始する予定です。 意思決定をどう高める? 具体的な行動計画としては以下の2点を挙げます: 1. 現在私が直面しているような時期や、来期の事業戦略を考えたりプロジェクト方針立案の際に、これまで学んできた分析手法を活用し、関与するメンバーの方向性を統一する。 2. 単に分析手法を行うだけでなく、「経営者の視座で考える」「ジレンマを過度に恐れない」「他社の意見をしっかり聞く」といった意識すべき事項を忘れずに持ち続けることで、効果的な意思決定を行っていきたい。

データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

クリティカルシンキング入門

クリティカルシンキングが変える仕事のアプローチ

クリティカルシンキングを再評価するには? 改めて「クリティカルシンキング」とは何かということと、「問いから考え始める」ことの重要性を学ぶことができました。私にとっての「クリティカルシンキング」とは、「問いと打ち手(根拠と主張)」だと現在は考えています。物事を考え始める際は、必ず「何の答えが必要なのか」を問いという形で置いてから思考を始めていきたいです。 問いを立てる場面での有効性とは? 問いを立てることが必要な場面は多々ありますが、特にクライアントや社会課題の解決策を考える場面で役に立つと考えています。具体的には、応募の集まっていない企業への母集団形成案を考える際や、その打ち手として企業の年間休日がネックとなっている場合の人の動かし方を考えるときなどです。 定量的な問いで現状分析を深めるには? 漠然と「この企業の採用成功をするにはどうしたらよいか」と考えるのではなく、「この企業の年間休日を120日にするにはどうしたらよいか」や「この企業の応募者数を月5人多くするにはどうしたらよいか」と定量的な問いを立てたうえで現状分析をしていきたいです。

データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

データ・アナリティクス入門

5W1Hで開く業務改善の扉

数字はどう生かす? 問題を把握する際には、勘や経験だけでなく、定量的な数字と各工程における「いつ」「どの業務が」「なぜ」「どのように」という観点でステップごとに整理することが大切だと実感しました。この考え方により、現状を正確に把握し、その情報を基に仮説を立て検証することで、具体的な解決策を見出すことが可能になります。 現状をどう読む? 業務改善においては、まず現状を正確に捉えることが必須です。各作業工程を定量的に整理し、5W1Hのフレームワークで状況分析を行います。ただし、数字だけでは捉えられない部分もあるため、現場へのヒアリングを通じて、数値との整合性を確認することが求められます。 仮説はどう進む? また、現状の正確な把握を前提に、仮説を立てて検証を重ねるプロセスが重要です。仮説策定にあたっては、現場担当者の感覚も加味し、実際の状況に即した検証を行うことで、机上の空論に終わらないよう努めています。さらに、最近学んだマーケティングの考え方を活かし、実際の行動パターンや離脱ポイントに注目しながら改善策を検討していきたいと考えています。

データ・アナリティクス入門

営業部門と協働し、データ分析の切り口を探る学び

定量分析で何が重要? 定量分析の重要性と、分析では比較や仮説、目的が重要であることを学びました。実務においては仮説を立てる能力や、分析において適切な切り口を見つけることが求められます。このためには、分析対象に対して強い興味を持つことが大切だと感じました。 問合せ増加の施策検討 現在、私は担当しているWEBサイトからの問い合わせ数を増やすための施策検討を行っています。問合せの生データやサイトのアクセスログなど、使用可能なデータは整っています。また、SFAデータを分析し、2025年度の営業施策を検討中です。こちらについてもSFAデータにアクセスできる状況にあり、今後加工は必要ですが、元データは揃っています。 SFAデータ分析の進め方 まずは、SFAデータの分析から着手する予定です。SFAデータには多くの分析切り口が存在しますので、目的や仮説を明確にするために、いきなり手を動かすのではなく、営業部門の担当者を巻き込むことにします。具体的にはどういった分析が求められるのか、現場で役立つかどうかを相談することが大切だと考えています。

データ・アナリティクス入門

平均値の裏に隠れた真実

計算方法で何が変わる? 動画を通じて、平均値と言っても採用する計算方法によって分析結果が大きく異なることを実感しました。これまで数値のばらつきや外れ値についてあまり意識していなかった自分にとって、正確な分析を行うためにはこれらの点をしっかり捉える必要があると感じました。平均、加重平均、中央値の使い分けについては理解していたものの、幾何平均や標準偏差という手法は新たな気づきとなりました。 例外ケースはどう捉える? また、契約顧客に関して解約率やアップセル率を分析する際、まれに契約金額が大きく、どうしようもない理由で解約となる場合や、一時的にアップセルが成立する場合があります。そのような際には、これらのケースを外れ値(ばらつき)として扱うことにより、より現実に即した数値で分析できると感じました。 手法の選び方はどう? 今後、定量的なデータ分析を行う際には今回の学びを活かし、初めは単純平均や加重平均など、さまざまな手法で計算結果を出してみることで、それぞれの数値の違いを実感しながら、より精度の高い分析を心がけていきたいと思います。

データ・アナリティクス入門

理想と現実をつなぐ論理ツリーの魔法

ギャップをどう認識する? 問題解決の4ステップのうち、特に「What」に注目し、あるべき姿と実際のギャップを定量的な指標(戻り作業件数、作業にかかった工数、提案件数など)で明確に合意することの重要性を学びました。また、原因分析ではロジックツリーを活用し、検討内容を「もれなく、ダブりなく」分けながら視覚化する方法についても理解が深まりました。 議論の進め方はどうする? 議論に先立ち、まずメンバー全員で各ステップやロジックツリーの使い方を確認することで、効率的な打合せの進行が期待できると感じました。たとえば、自グループの課題を「あるべき姿に届いていない事柄」と「ありたい姿に到達させたい事柄」に分け、さらに緊急度や重要度の観点で項目を設定し、課題をリストアップします。その後、部門の評価基準に沿ってグループ化・絞り込みを行うことで、議論の視野が広がり、参加メンバーの納得度も向上すると考えています。さらに、年間のグループ目標設定時に、ロジックツリーを用いた項目分けも取り入れ、数多くある課題の中から重点項目を絞り込む議論の場を設ける予定です。

「分析 × 定量」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right