クリティカルシンキング入門

学びのこだわり、伝わる工夫

グラフ作成の基本は? グラフ作成時には、まずタイトル、単位、軸の原点を0から始めるといった基本事項を意識する必要があります。時間軸のデータは慣例通り縦のグラフを用い、X軸を基準とした折れ線グラフで傾向や変化、連続性が見えてくるように設定します。また、「何を伝えたいか」という目的に応じてグラフの形式を選ぶことが求められます。普段の業務でグラフを作る機会は少ないかもしれませんが、数字だけでなくTIPを意識して正しい表現方法を取り入れることが大切です。 フォント選びのポイントは? 文字表現については、注目してもらいたい点を過度に強調しすぎず、フォントや色の選択により印象を工夫することがポイントです。さらに、アイコンを補助的に用いることで理解が促進される効果もあります。特にパワーポイントのスライドを作成する際には、フォントの種類や色、アイコンの使い方に細部までこだわると良い印象を与えられるでしょう。 スライド作成の秘訣は? スライド作成時は、情報が出てくる順番に合わせて図表を配置し、事実とともにプレゼンのターゲットに合わせた「何を伝えたいか」を明確にする表現が重要です。帯グラフの幅から比較しやすい特徴を活かしたり、折れ線グラフと棒グラフを一つにまとめる工夫、または矢印などで強調する方法も効果的です。TIPを意識して丁寧に作成することで、見栄えの良いスライドが完成します。 これらのポイントを踏まえ、日々の業務やプレゼンテーションで説得力のある資料作りに役立てたいと思います。

クリティカルシンキング入門

データ分析で見える新たな可能性

データ分解の視点とは? 事象をより深く理解するためには、分解が重要です。分解の際は、Who、When、Howなどの視点から試行錯誤が必要です。一つの切り口に固執せず、様々な切り口から数字を確認することが求められます。このとき、切り口は「もれなくダブりなく」を意識しながら進めましょう。 直感に頼らずデータ確認 切り口が見つかったら、それに基づいてデータを直感的に分析します。しかし、直感的な推測は一度疑い、データで確認することが大切です。結果が期待外れであっても、それは失敗ではなく、次のステップへの前進です。 新しい視点で見る方法は? ウェブデータの分析でも、新しい切り口での分析が効果的です。切り口は自動的に決めるのではなく、MECEを意識して分解していきます。ある切り口が有効であっても、他にないかを考え、複数の切り口でデータを分析します。 チームで進める業務の確認 業務においても同様に、チーム全体での作業がもれなくダブりなく行われているか確認します。また、責任範囲を異なる切り口で考えてみると良いです。 マンスリーレポートにどう反映? ウェブデータの分析に関しては、全体を定義した上で新しい切り口をMECEを意識して今週から来週の間に実施し、その結果をマンスリーレポートに反映します。この過程では、全体を把握した上でチームメンバーと議論し、より良い切り口を探してみましょう。 なお、チームの業務に関しては、まずは思考実験を行うことから始めてみてください。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

リーダーシップ・キャリアビジョン入門

リーダーシップ変革への挑戦!

指示の基準を変える理由とは? これまで私は「仕事の難易度」や「任せる人のスキル、経験」といった基準で指示を出していました。しかし、「環境要因」や「適合要件」という観点から再考することで、より深い理解が得られると感じています。また、マネジリアルグリッドという分析方法を知り、自分自身だけでなく、部下や同僚、上司の理解にも役立つと実感しました。リーダーシップとは直感に基づくものが多いと思っていましたが、基本的な理論を学ぶことで基礎力を高めることが重要だと考え直すことができました。 目標達成に向けた具体的なアプローチは? 下半期が始まる中で、具体的な目標を立て、その取り組みの必要性を明確に説明することで、変革を推進する姿勢を示したいと考えています。その際、各目標達成に必要な「環境要因」と「適合要件」を検証し、条件適合理論に基づいたリーダーシップを使い分けていきたいです。また、営業部門として達成すべき目標が多いため、メンバーにリーダーとしての役割を配分する必要があります。今回学んだ理論を活かし、繰り返し説明することで自分自身のスキルとして身につけていきたいと考えています。 変革を実現するための方法とは? 直近の下期方針説明会では、中長期ビジョンを示し、変革を促す取り組みを打ち出すつもりです。変革を実現するためには、指示型でゴールを設定し、具体的な活動を決定することが重要です。また、定期的な会議や1対1のミーティングを実施し、状況確認を行う中で、褒めることを実践していきます。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

クリティカルシンキング入門

ひと手間でひらく真実の扉

数字から何が見える? 数字で示されたデータには、どのような情報が含まれているのかを考察する中で、ひと手間加えて加工したり、切り口を工夫することの大切さを再確認しました。分け方は必ずしも均等である必要はなく、例えば18歳以下、19~22歳、23歳以上という区切りにより、隠れた特徴や傾向が見えてくるという考え方は非常に参考になりました。 具体と抽象はどんな関係? また、時間・人・手段といった観点から切り口を考えるとともに、MECEの視点を併用して具体と抽象の行き来ができるようになると、得られる知見が豊かになっていくことを実感しました。この手法を習得するには、実際に手を動かして試行錯誤するしかないと痛感しています。 企画資料はどう見える? さらに、この方法は企画実現の根拠資料作りにおいても非常に役立つと考えています。プラットフォーム企画が関係部門の承諾を得られずに停滞している現状に対して、ヒト・モノ・カネ・情報をMECEの視点で見える化することで、各部門の懸念を払拭し、説得力のある資料作成を目指したいと思います。 新たな販促策は? 加えて、他部門のプラットフォームの問題点を把握する際は、入手可能な範囲で登録者数やその内訳データを加工・確認し、そこから新たな販促手法を予想することが必要です。過去のチラシ反響を、時期や時間帯、年齢層、問い合わせ手段、地域などの切り口で整理・データ化することで、顧客の動きをより正確に読み取る検討が進むと考えています。

クリティカルシンキング入門

数字の背後にある真実を解き明かす方法

数字の背後に何を見いだす? 数字を見る際には、単なる数値を追うのではなく、その背後にどのような事実を見いだしたいかを考え、仮説を立てて分析することが重要です。データを収集する際には、手元にある情報だけでは偏りが出る可能性を念頭に置き、多様な視点から情報を捉えることを心掛けるべきです。 データ分解の鍵は? データを分解する際には、「いつ」「誰が」「どのように」という観点を含め、網羅的に考えることが必要です。そして、本当にその推論が正しいのか、さらなる傾向を2、3考えてみることも重要です。分解して何も見つからなくても、それは失敗ではありません。切り口が不明確な場合は、まず分解を試み、それでわからなかったら特定の傾向がないことを確認することが意味を持ちます。 売上増減の要因は? 売上の増減を分析するときは、顧客や商品ごとに要因を探り、傾向を把握して未来の施策に活かします。過去の傾向に従うだけでなく、今あるデータを新たな視点から見直し、「本当にそうか?」と常に疑問を持ちながら進めることが求められます。 他組織の施策も見直してみますか? 自組織の施策と売上推移を振り返る際には、数値をグラフ化して新たな観点がないかを再考します。他組織の施策や売上推移についても、提示されている視点のみに依存せず、仮説をもって直接問いかけ、新たな傾向を探ります。うまくいっていない事例がある場合は、その要因をチームメンバーとともに分解の視点で考察し、どのように対処すべきかを話し合います。

戦略思考入門

視野広げる!実践で磨く戦略術

戦略の真意は何? 戦略とは、効率よく目的を達成するために何を行い、何を控えるかを選択することですが、現状では日々の業務をただ繰り返すだけになっており、広い視野で全体を見据えた判断や、長期的な視点に基づいた判断ができていないと感じています。 講座のポイントは? 今回の戦略思考入門の講座では、ビジネスフレームワーク、基本戦略、事業経済性などについて学びました。単に各理論を知っているだけでは十分な戦略には結びつかないため、自分の業務に具体的な状況として適用できるよう、理論の考え方を深化させたいと思います。 売場戦略はどう? また、売場作りにおいては、POSデータに現れる数字だけでなく、その背景にある顧客の状況や自社の状態も重視し、自店舗の戦略に生かしていきたいと考えています。従来は、売れている商品=お客様に支持される商品という結論に至っていましたが、この方法では現状のニーズは把握できるものの、長期的には同じ手法に固執して停滞する恐れがあると同時に、会社全体の経済性も十分に考慮されていませんでした。 地域経営の今後は? 今後は、より広い視野で地域社会にとって必要とされる店舗運営や、会社全体の利益向上に寄与する戦略を構築していくことが重要だと認識しています。自店舗や地域の状況をフレームワークを用いて分析し、その結果を基に各行動に反映させることで、POSデータの数値も長期的な視点や地域のお客様、会社全体の利益につながるかという観点で再評価して取り組んでいきたいです。

戦略思考入門

選択がビジネスを決める:収益を最大化する方法とは

ビジネスの方向性をどう決定するか? 戦略において、何かを捨てることも含めた選択を行うことは、ビジネスの方向性を決定することと同義であると感じました。選択とは優先順位付けのことであり、その基準の設定が重要です。基準を複数パターンで見直すことで、固定観念を打破し新しい戦略を生み出すことが可能だと学びました。 トレードオフの関係をどう活かす? また、複数の検討要素がトレードオフの関係にある場合、一方に注力することが収益の安定に繋がります。しかし、トレードオフの要素を両立させるアイデアに到達すると、ブレークスルーが生まれ、従来考えられなかった大きな収益を得ることができます。この点に共感し、私もこのような姿を目指しています。 顧客提案における優先順位は? 様々なシーンで優先順位付けが必要ですが、顧客への提案は総花的になりがちです。本当のニーズを見極め、優先順位を検討していきたいです。例えば、サービスの質なのかコストなのかといったトレードオフに関しても、最大化ポイントを見つけることで迅速に注力できます。また、顧客の特性に応じた柔軟な対応も重要だと改めて認識しました。 提案方針の練り直しは? 現在進めている提案を通じて、選択の重要性をチームで共有し、提案方針の練り直しを行います。優先度の考え方にはメンバー間で異なる可能性があるため、アイデアを出し合い、複数のパターンで検討します。顧客の特性を見極め、最も顧客に響く提案を選択することで、効果の最大化を図りたいと思います。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

クリティカルシンキング入門

数字で導く!分析の新たな視点

データ加工で全体像を把握するには? データを加工する際には、与えられた情報をそのまま受け取るのではなく、全体像を把握するために必要な項目を追加することが重要です。単に生の数値を羅列するのではなく、表として整理することで、様々な気づきを得ることができます。 グラフ化で得られる洞察とは? また、グラフ化する際には、数値をどのように区切るかが得られる解釈に大きな影響を与えます。どのように分ければ、より良い気づきを得られるかを意識しながら数字を整理することが求められます。グラフ化はあくまで手段であり、そこから得られる洞察を基に仮説を立て、実際の行動に結びつけて改善を図ることが目的です。 傾向が見つからないときの価値は? さらに、数字を分解してグラフ化した結果、傾向が見つからない場合もありますが、それは失敗ではありません。むしろ、傾向がないことが判明したこと自体に価値があります。 私はソフトウェアエンジニアなので、数字を分析する作業はあまり多くありません。しかし、例えばチームのミーティング時間を削減する際、いつ誰がどれだけの時間をミーティングに費やしているのかを分析するために、このような方法を活用できると考えました。 分析作業の目的をどう意識する? 分析作業に取り組む際、つい情報をまとめることが目的になりがちです。しかし、「何のための分析作業なのか?」、「仮説を得るためにはどのようにまとめるべきか?」といったことを常に考えながら、分析作業を進めたいと思います。

「必要 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right