データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

アカウンティング入門

カフェで見つける利益の秘密

利益の違いはどう考える? 5種類の利益の成り立ちや違いについて学び、増益や減益という言葉一つとっても、どの利益を指すかで意味が大きく変わることを実感しました。また、カフェの事例を通して、一口にカフェと言ってもターゲット顧客やコンセプトが異なれば、例えばミノルとアキコでは損益構造が大きく異なる点に気づかされました。 採算改善案はどう立案? 新規プロジェクトの立ち上げ時には、P/Lの構造をしっかり理解し、採算改善のための方法をロジカルに提案したいと考えています。また、損益改善のためには収益を増やすか費用を減らすかという選択を、プロジェクトごとにどのように実現するかを検討する必要があると感じました。 知識はどう深められる? さらに、アカウンティングの知識をより深めるとともに、自分の業務だけでなく、グループワークで他の受講生の事例を聞くことで、より実践的な知見を得たいと思います。また、ミノルとアキコの事例に加え、身近なカフェの損益構造と比較しながら議論を深めるとともに、他の受講生が今回の講義をどのように仕事に活かしているのかも伺ってみたいです。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

マーケティング入門

顧客志向の新たな価値創造に挑戦

顧客志向の重要性を再確認 マーケティングにおいては、何よりも顧客志向が重要であることを改めて学びました。「売れる仕組みを作ること」がマーケティングの定義とされていますが、その根底にあるのは顧客の存在です。すなわち、自社の商品を単に知ってもらうだけでなく、その魅力を感じてもらうことが重要です。 社員満足度向上の方法とは? 自社のサービスを将来的に営業や外部収益に結びつけるために活用するのはもちろんのこと、顧客を社内外のメンバーやステークホルダー全員と捉えることによって、課やオフィスの従業員満足度を高めることにもつながるのではないかと考えます。 全ての人を顧客と捉える意味 自分に関わるすべての人を「顧客」として捉え、その方々に満足していただくためには何が必要かを考えることが大切です。そのためには、その人たちのニーズを正しく把握し、偏った考えに陥らないよう、広い視野や様々な視点、そして高い視座を持って物事を捉えることを意識したいと思います。そして、そのニーズに応える、あるいはそれを上回るサービスを提供できるスキルを磨くことを心掛けたいです。

データ・アナリティクス入門

仮説検証で未来を切り拓く一歩

なぜ仮説検証が必要? 今回の振り返りを通じ、まず仮説検証の重要性を再認識しました。数字を単に眺めるだけではなく、要素ごとに分解し、さまざまな仮説を立てながらデータを検証のツールとして活用する方法が有効だと感じました。また、比較を意識した分析を行うために、率や代表値を用いる手法が非常に効果的であるという考えにも改めて気づかされました。 実績把握で何が変わる? これらの学びは、月次実績の把握や事業計画の検討にも応用できます。過去の実績に基づいて仮説を立て、検証を重ねることで、次年度への具体的な打ち手が明確になっていくと実感しました。前年同月比や前年同期比を活用する手法も、現業務において引き続き継続し、より深い分析に結びつけたいと考えています。 復習と共有で成長は? また、ナノ単科の画面が見られなくなる前に、回帰分析や代表値の部分をしっかり復習し、自分の知識として定着させることが必要だと感じました。さらに、アウトプットの重要性を痛感したため、自ら立てた仮説や検証結果を周囲と共有し、意見を取り入れることで自身の成長を一層促進していきたいと思います。

データ・アナリティクス入門

目的意識と比較で開く新たな発見

目的意識はどこに? まず、分析の目的を考えることが当たり前だと感じられるかもしれませんが、私にとっては大きな気づきでした。これまで、データを可視化すれば自然と新しい発見や傾向が見えてくると漠然と思い込んでいました。しかし、まず「何のために」分析をするのかという目的意識がなければ、求める結果は得られないということに気づかされ、仕事への取り組み方が変わると感じました。 比較の意義は? また、分析=データの可視化というイメージだけでなく、その基本は「比較」にあるという新たな発見もありました。具体的な比較対象や基準を設定することで、意思決定がしやすくなります。たとえば、安全衛生に関するタスクでは、法令遵守の状態を確認するために法規制と社内ルールを比較し、どのレベルで何を行うべきかを整理する必要があります。 方法はどうする? 今後は、具体的な方法はまだ模索中ですが、「目的」と「比較」を意識し、どのような結果を得たいのかを明確にしながら取り組んでいきたいと思います。仕事に迷いが生じたときや上司への説明・説得が必要な時に、この考え方を生かしていきます。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

クリティカルシンキング入門

固定概念をひらく数字探求

どんな切り口がある? データの扱いや切り口を変えることで、見え方や結果が大きく異なることを学びました。「本当にこれだけなのか?」と問い続ける姿勢の大切さを痛感しています。また、思い込みや自身の仮説だけで分析しないよう、注意が必要だと感じました。特に、細かくデータを刻む手法は非常に印象深く、発見の連続でした。 定性と数字はどう違う? 普段は定性的な業務が中心で、データを扱う機会が少なかったので、新しい視点を得られたことに新鮮さを感じました。その一方で、数字をもっと活用すれば、業務の見え方が変わる可能性を実感しました。これまで「この業界はこの数字」という固定概念にとらわれていた部分以外の新たな数字や切り口を探る必要があると考えさせられました。 どんな指標が必要? この授業を通じて、定性的な課題をどのように数字に置き換えるか、またどんな指標を使えば良いのかを改めて考える機会となりました。定性的なものを数字化する際には、それに見合う指標や基準が不可欠であり、その処理方法についても他の受講生の意見や感想を参考にしながら模索していきたいと思います。

データ・アナリティクス入門

データと仮説で納得の選択

正確なデータは? 実務では、正しいデータに基づく比較ができていないため、意思決定で迷うことが多いと実感しています。経験や定性評価のみに頼ると限界があり、説得力にも欠けるため、定量的なデータを用いて自分自身も相手も納得できる意思決定を行いたいと考えています。 データの扱いは? これからは、まだ扱ったことのないさまざまな種類のデータに触れる必要があると感じています。そのため、まずはデータに関する知見を深め、各データの特徴に合った加工方法やグラフの見せ方を学びたいと思います。 仮説の重要性は? また、分析のプロセスでは、目的だけでなく必要な項目やデータに対する仮説の設定が重要だと感じています。仮説を立てる力を養うためにも、多くのデータに目を通し、さまざまな角度からの切り口を見出すためのフレームワークを習得したいです。現在担当している店舗オペレーション改善においては、トライアル検証やローンチ後の結果分析が課題となっており、通常の切り口に加えて新たな視点からの比較を行い、分析結果をプランニングやプレゼンテーションに活かしていきたいと考えています。

クリティカルシンキング入門

考えを整理する力が劇的に向上

仕組みの効果は? 「ピラミッド・ストラクチャー」の仕組みは、メインメッセージや結論、主張とそれを支えるキーメッセージの作成プロセスであり、私にとって考えを整理する際の質とスピードを向上させる学びとなりました。具体的には、イシューを特定し、論理的枠組みを考え、主張を適切な根拠で支えるというステップが重要です。 なぜ的確な指示? 私の職務では、支部組合員から寄せられる意見に対して、後輩の作成した回答案に修正指示を出さなければなりません。その際、「ピラミッド・ストラクチャー」を活用することで、本質を捉えた結論とその根拠を打ち出すことが可能になり、より的確な指示が出せると感じています。 結論の見直し方は? 結論を導いた後には、「自分の結論は本質を捉えているか」「その結論を支える根拠は明確で、不足はないか」と常に客観的に見直すクセをつけています。もちろん、限られた時間の中で業務を遂行する必要があるため、思考に時間をかけ続けるわけにはいきません。しかし、上記の思考方法を活用し、質とスピードの向上を目指してトレーニングを続けていきたいと考えています。

アカウンティング入門

出会いで広がる学びの輪

多様な背景を感じた? さまざまな職業の方々と出会い、各々がそれぞれの背景を持っていることを実感しました。アカウンティングを通じて多くのビジネスがコミュニケーションを取っている様子を見ると、この学問の歴史の深さと重要性を改めて感じました。まだ分からないことも多いですが、皆さんと共に成長していきたいと思います。 学びをどう活かす? 今週学んだことを活かすためには、いくつか具体的な方法があると感じました。まず、アドバイザーに相談する際には、相手の言語に合わせることが大切だと分かりました。次に、物事を言語化することでビジネスに確実性が生まれ、信頼関係を通じてビジネスが広がると実感しました。そして、学んだ知識を放置せず、毎月アドバイザーにアウトプットすることが必要だと理解しました。 参加目的は何? また、さまざまな方々がそれぞれ異なる目的を持って参加していることが印象的でした。数字に厳しい職業の方々の意識の高さに刺激を受け、自分自身のビジネスを見直す機会にもなりました。皆さんの工夫を学び、日々の業務に活かしていければと感じています。

「必要 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right