データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

データ・アナリティクス入門

数字の向こうに見えた本当の学び

数字だけで判断してる? 数字をそのまま見ると、判断を誤る危うさや怖さがあります。実態を正確に把握するためには、数字の中身に潜む意味を紐解き、大枠と詳細を行き来しながら分析する必要があります。 集約方法は適切? そのためには、数値を適切に集約して可視化することが求められます。ただし、集約の方法自体も状況に応じた判断が必要です。数字の意味を正しく読み取り、どの手法で集約すべきかを判断しなければ、誤った方向へ導いてしまうリスクがあります。 どの手法が最適? 何度も試行錯誤を重ね、どの手法が実態を正しく反映しているかを見極めることが重要です。自分が行った集約内容を比較することで、分析の精度を高めることができます。 数字の羅列で判断? 数字が羅列されるだけでは、実績、利益、投資経費といった各状態がどのようなリターンに結びつくのかが明確に見えにくくなります。これらの判断材料を集約し、分散して検討することで、より妥当な判断が可能になります。 見るべきはどこ? また、見るべきポイントを示すことは分析を行う上での基本的なマナーであり、迅速な判断を下す要因にもなります。難しい計算式に頼るのではなく、基本的にはツールやExcel、BI、AIなどを活用して分析を進める場面も多いですが、これらの使い方を根本から学び、センスを磨くことも重要です。 視覚化の工夫は? 単に数字をグラフにするのではなく、伝えたいポイントがしっかりと相手に伝わるビジュアルを作成するために、思考と工夫を重ねる必要があります。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

クリティカルシンキング入門

データから見える新事業の可能性探し

データ分析はどう見直す? 得られたデータをそのまま解釈するのではなく、解析の手間を加えることで新たな理解を得ることが可能です。具体的には、割合や相対値を使ってデータを加工したり、数値をグラフや図に変えて視覚的に理解する方法が有効です。また、多くの視点や切り口でデータを分け、特徴的な傾向を探ることが重要です。この際、単に機械的に等間隔で分けるのではなく、その方法が本当に適切かどうかを常に疑う姿勢が求められます。いくつかの切り口で得られた結果を総合的に考慮する際は、誤った結論に至らないよう注意が必要です。 新規事業の見極め方は? 新規事業テーマを探索する過程では、どのテーマを選定すべきか全体像を把握するために、異なる切り口を試してみると良いでしょう。市場規模、成長率、顧客数、深刻度、性別、年齢、居住地などでデータを分けると、それぞれ異なる見方ができるかもしれません。そして、特徴的な傾向に対しては鵜呑みにせず、一度その信ぴょう性を確認する習慣を持つことが大切です。 情報収集は何を重視? 現在は情報収集やヒアリングの段階ですが、まずは分析に必要な情報をしっかり集めることが重要です。その後、複数の切り口でデータを分け、特徴的な傾向が浮かび上がるかを確認します。ヒアリングを行う時も、聞いた内容をそのまま受け取るのではなく、別の視点や視座で見た場合どうなるかを意識して理解を深めたいと考えています。また、課題がどのように存在しているのかを探る際、ヒアリングした内容を整理することで思考を整えたいと思っています。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

データ・アナリティクス入門

効率UP!ロジックツリーで問題解決

ロジックツリーの応用法は? what.where.why, howでロジックツリーを組み立てて考える方法が非常に参考になりました。これまでは、問題を発見するとすぐに分析を始めてしまっていましたが、一度全体像を分解してから分析を始めることで、より効率的に進められるように感じました。 MECEを意識する重要性とは? また、MECE(漏れなく、重複なく)を意識して考えることも重要だと学びました。特に構造化が難しい問題の場合、とにかく思いつく選択肢を挙げることが多かったですが、今後はできるだけ全ての要素をもれなく考えることを心がけたいです。そのために、さまざまなフレームワークに触れて、自分の切り口をさらに磨きたいと考えています。 コンテンツ企画での分析法は? コンテンツ企画を立案する際、プラットフォームで評価される要素を構造化した後、企画や編集、テキストといった項目ごとに詳しく分解し、それぞれの要素における理想の姿と現状のギャップを分析することが必要だと感じました。これにより、原因の分析がより深く進められると考えています。また、コンテンツの反応を良くするために、各要素ごとにブレインストーミングを行いたいと思います。 理想のコンテンツをどう定義する? まず、自分が関わる領域のコンテンツ要素を構造化し、分解することから始めたいです。その後、それぞれの要素において理想のコンテンツを定義づけし、コンテンツ制作チームと協力しながら、各要素をどのように改善するかについて議論を進めたいと考えています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

クリティカルシンキング入門

クリティカル思考で切り拓く未来

情報分析はどう進化? 論理的に情報を分析する方法を学び、情報を体系的に整理しながらその信憑性や関連性を評価する力が向上しました。これにより、正確な結論を導く基盤が整い、今後も業務の場面で役立てたいと考えています。 質問で何が深まる? また、適切な質問を行うことで、情報をさらに深掘りする力が養われました。さらに、複雑な問題に直面した際には、クリティカルシンキングを用いて効果的な解決策を見出すことができるようになりました。 日常業務の改善は? 今後の日常業務では、以下の点を意識して知識を活用していきます。まず、プロジェクトの進捗や市場動向を正確に把握するため、情報収集の際には信頼性や関連性を重視してデータを整理し、効果的な意思決定に繋げます。さらに、業務上の問題に対してはクリティカルシンキングで根本原因を特定し、創造的かつ実行可能な解決策を導入していきます。 具体的な取り組みとして、以下の習慣を実践していく予定です。 ・情報収集と分析の習慣化:   ✓ 日常業務で必要な情報を収集する際、信頼性や関連性を意識してデータを整理する   ✓ 分析した情報をもとに、定期的に報告書やプレゼンテーションを作成し、意思決定に役立てる ・フィードバックの活用と自己改善:   ✓ 定期的に上司や同僚からフィードバックを受け、自身の業務の進め方を振り返る   ✓ 改善点を明確にし、具体的な改善計画を立て、次の業務に活かす 以上の学びを活かし、今後の業務改善と効率向上に繋げていきたいと考えています。

戦略思考入門

差別化戦略で未来を切り拓く方法

市場環境はどう見る? 差別化戦略を進める際には、いくつかの重要な点を念頭に置く必要があります。まず、見落としや抜け漏れを防ぐためにフレームワークを活用し、市場環境を正確に把握することが重要です。また、差別化に際しては、ターゲットとする顧客層を正確に設定する必要があります。顧客の視点に立って考え、競合企業がどこになるのかを判断することも重要です。さらに、施策を持続可能で実施可能なものにするために、実行可能性についても検討する必要があります。 差別化は本当に必要? また、ポーターが提唱する3つの基本戦略を考慮し、本当に自社が差別化戦略をとる必要があるかを判断することも不可欠です。差別化戦略を選択する場合、VRIO分析を活用しながら進行させることが求められます。 後発者はどう戦う? 私の現在の仕事に当てはめると、新たに進出しようとしている市場において、我が社は後発者となります。そのため、市場分析を念入りに行い、ターゲットとなる顧客層を明確化した上で戦略を策定する必要があります。現状のイメージでは、差別化戦略あるいは集中戦略を検討することになると考えられるので、VRIO分析を用いて自社の資源を評価し、意思決定を行っていきたいと考えています。 収益基盤の課題は? 現在は、収益化に向けた基盤構築の段階にあります。しかし、未来を見据えた市場分析を行い、顧客ターゲット層を決定する時期が訪れた際には、フレームワークを活用した分析を根拠として明確に提示できるよう準備を進めておきたいと考えています。

マーケティング入門

業務改善の鍵を掴む顧客視点のチカラ

顧客のニーズをどう捉える? 顧客志向に基づき、長く愛される商品やサービスを生み出すためには、顧客のニーズの核心を捉えることが重要です。同時に、自社の強みを的確に理解し、それを活かす可能性を模索することも欠かせません。具体的な方法としては、行動観察やデプスインタビューなどがありますが、あらゆる事象を顧客視点で捉える姿勢が求められます。顧客ニーズを曖昧に捉えると、他社に追随されたり新商品に脅かされる恐れがあります。顧客が自らの費用ででも解決したい問題、「ペインポイント」を見つけ出し、それを「ゲインポイント」に昇華させることを目指します。 業務改善に必要な視点は? 新しい業務で業務フロー図を作成する機会においても、実務者の視点から「ペインポイント」を特定し、それを解決することで業務改善へと繋げることができます。また、顧客視点をより強く意識することで、ヒアリングや課題の抽出・解決策の精度が高まると感じました。カスタマージャーニーという概念も学び、業務移管の場面ではより当事者意識を持って取り組むことが大切だと理解しました。 業務移管で心掛けるべきことは? さまざまな業務移管や委託を受ける立場にあるため、移管元の人々の立場や業務工程を意識しつつ、ヒアリング、業務代行、業務フロー図の作成、改善提案を進めていきます。そのための準備として、ヒアリングの場面では、より詳しい状況や体験、関心事を引き出すことを重視しています。具体的な事象だけでなく、その背景にある体験や印象を言語化することも心掛けています。

デザイン思考入門

デザイン思考で見えた変革の瞬間

発注とユーザーの違いは? ITシステムの外部委託先の立場から考えると、システム開発を進める際、お客様はエンドユーザーというよりも、顧客企業の担当部門として対応することが多いです。担当部門はユーザーと異なる視点を持つため、今回学んだエンドユーザーの立場よりも、発注者の意向に注力せざるを得ません。しかし、発注者との共感、課題の理解、試作品の作成といったプロセスは十分に実現可能です。真にエンドユーザーに役立つものを提供するのは難しいものの、発注者の満足を追求する姿勢が重要だと感じています。 満足の不一致はどう? 一方で、発注者の満足を追求できたとしても、発注者がエンドユーザーに目を向けなければ、エンドユーザーの満足と発注者の満足は一致しなくなります。このような複雑な階層構造を持つ大規模な組織では、デザイン思考を一部の人だけが理解していても、途中のプロセスでその意義が薄れてしまうため、広く多くの人に理解してもらうことが必要だと考えました。 試作品の使い分けは? また、プロトタイプの作成方法によって検証できる項目は異なるため、一つのプロトタイプが最適かどうかを問うよりも、各プロトタイプの特性を活かして使い分け、互いに補完していくことが重要です。さらに、組織階層が深い大規模な組織では、開発過程に関わるすべての人がデザイン思考の考え方を身につける必要があると感じました。加えて、生成AIを発注者役として活用し、想定問答を行う手法も有用であると実感したため、今後も積極的に取り入れていきたいと思います。

「必要 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right