データ・アナリティクス入門

仮説で挑む学びの冒険

仮説はどこから始まる? ■仮説を立てる 仮説を立てる際には、まず3C分析や4P分析などのフレームワークを活用し、幅広い視点で考えることが効果的です。複数の仮説を挙げ、これらの中から絞り込むことで、反論や別の可能性を排除できるように意識することが大切です。また、意図的に役割や網羅性を持たせることもポイントとなります。 検証はどう行う? ■仮説を検証する 仮説を検証する際は、比較の指標として平均や標準偏差などのデータ評価の手法を選ぶとよいでしょう。加えて、データ収集の際には「誰に」「どのように聞くか」に十分注意し、有力な仮説の検証に加えて、他の仮説が成立しないことを示すデータも集める必要があります。 仮説の違いは何? ■仮説の分類と意義 仮説には「結論の仮説」と「問題の仮説」の2種類があります。複数の仮説を立てることで、検証マインドや説得力が向上し、関心や問題意識が高まるだけでなく、物事のスピードや行動の精度も向上することが期待されます。 最初は何から進める? 仮説が求められた場合、最初にどこから取り組めばよいかわからなくなることがありますが、その際はフレームワークを活用するのが良いと考えています。実際、過去には「クロスセルで自社商品と相性のよい商品は何か?」や「価格変更による影響」を検討した経験があります。似たような課題に対しても、あらゆる仮説を立てたうえでロジックツリーに当てはめ、優先度を決めながら、時間をかけて分析すべき事項を整理していきたいと思います。 有力仮説はどう選ぶ? どのように客観的な仮説を複数挙げるか、また有力な仮説に偏りが生じた場合にはどのように対応すればよいかについて、具体的な方法を検討したいと考えています。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

データ・アナリティクス入門

比較で浮かび上がる数値の真実

データ分析の意味は? データ分析とは、目の前にある数値だけを見るのではなく、比較を通して全体像を把握する作業です。見えていない情報にも仮説を立て、その仮説を検証していくことが重要だと感じました。また、分析対象の情報が本当に分析に適しているか、すなわち同じ条件で比較ができるかどうかを考える必要があると再認識しました。 従業員調査の見方は? 従業員サーベイの結果を集計・分析する際には、勤続年数や部署ごとの違いなど、比較するための項目を設定し、その項目ごとの数値の違いを検証する手法が有効だと思いました。過去と現在のデータをグラフで比較すると、経営陣にも伝わりやすい形で分析結果を示すことができると確信しています。今後の学びを通じ、より良い分析手法を身につけたいと考えています。 評価の背景を読む? また、評価の集計においても、単に数値を合算するだけでなく、個々の数値を詳細に分析することで、評価の変動に対する背景(仕事の内容や健康状態など)を把握し、人事としての原因究明に役立てられると思いました。 導入検討時の比較は? さらに、物品やシステムの導入検討時も、購入したい対象の販売元のデータだけに依存せず、導入の目的や他の製品との比較を行うことが重要だと感じました。例えば、現状のシステムから変更する際、どの点で改善が期待できるのかを明確にすることが求められます。 条件判断の極意は? 最後に、同じ条件での比較という考え方についてはなんとなく理解できましたが、本当に同じ条件なのかをどう判断するかという具体的なコツについては、まだ疑問が残ります。データ分析初心者として、わからない点が多い中で、皆さんと一緒に学びながらより深い気づきを得られればと思っています。

マーケティング入門

良い提案も魅せ方次第!成長のヒント

どうして売上が伸びない? キンレイが顧客の声に応えて冷凍うどんのアルミ容器を廃止したものの、売上は期待通りに伸びませんでした。しかし、お水が不要なうどんという新たな切り口で魅せることで、大幅な売上アップに成功しました。これは、同じ商品であっても、ニーズに合致したものであっても、いかに効果的に魅せるかによって顧客の反応が大きく変わることを示しています。 魅せ方の工夫は? 魅せ方を整理する上では、比較優位、適合性、わかりやすさ、可視性といった要件が参考になります。特に、比較優位やわかりやすさの観点からは、記憶に残るネーミングや効果的なキャッチコピーが重要だと感じました。また、新規性のある商品を市場に出すことは歓迎すべきことですが、その過程で競合が集まってくるため、常に顧客への訴求を忘れずに差別化に努める必要があります。普段、ネットショッピングなどで商品が売れていない理由を考えることも、マーケティング思考を養う上で大切です。 どう説得するの? 私はファイナンス部門に所属しており、社外では出資先から魅力的な投資元として認識され、共に成長していくことが求められています。一方、社内では上司や役員にリスクを伴う出資の理由を納得してもらう必要があります。今回の学びを通して、どんなに良い提案であっても、魅せ方が不十分であれば成果に結びつかないことを痛感しました。今後、自分の事例に適用できる具体的な視点についても、調べていきたいと思います。 効果的な訴求方法は? 実際のマーケティング現場や、上司や役員への説明の場面など、さまざまなシーンで人に訴求する機会があると思います。皆さんが日頃から工夫している魅せ方のコツやアドバイスがあれば、ぜひ共有していただきたいです。

データ・アナリティクス入門

問題解決力を磨く成長の一歩 業務改善で未来を切り拓く

どう成長体験を感じた? ライブ授業を受講することで、初回の自分と比べ、問題解決のステップをどのように構築すべきかを未熟ながらもイメージできるようになり、成長を実感しました。講座全体を振り返る中で、自分が何を学んだのかを再認識し、理想の姿を描いたうえで現状とのギャップを把握しました。このプロセスにより、問題解決のステップを具体的に理解し、自己成長にも応用できるという確信を得ることができました。 業務目的は明確か? 原価登録業務の効率化と適正な登録タイミングの実現に向けて、改善すべき点を明確にしようと考えています。まずは、業務の目的をはっきりと認識することが重要です。自分が担当している業務だけでなく、関係全体の目的や役割を確認し、現状の状態を数値などで正確に捉えるよう努めます。その上で、目的に沿った理想の業務フローを描き、現状とのギャップを明確にすることが不可欠です。 どんな対応が必要? これを実現するために、業務フローを細かく分解し、各工程を前のステップと比較しながら問題箇所を特定します。そして、どのような対応が必要か仮説を立て、検証を進める計画です。業務の目的を達成できるフローを構築するため、必要なデータの取得方法や精度についても、関係者と十分に議論しながら取り組むことが大切だと感じています。 データ分析は適切か? また、データを収集する際には、盲目的に数値を追い求めるのではなく、あらかじめ立てた仮説に基づいて精査する必要があります。複数のフレームワークを活用しながら仮説を検証することで、思い込みによる誤った方向性に陥らないよう注意しています。こうしたプロセス全体が、業務上の問題を解決し、登録業務の効率化に大きく寄与すると考えています。

データ・アナリティクス入門

ロジックツリーで分析力がアップしたWEEK2の成果

Whatの重要性とは? 問題解決のステップにおける「What」の重要性として、「あるべき姿と現状を埋めるギャップ」を意識することが挙げられます。ここでも、正しい状態(ありたい姿)と現状の「比較」が必要であることを学びました。 ロジックツリーの活用は? 問題の明確化・特定の段階で活用できるフレームワークとして、層別分解と変数分解があります。特に変数分解の観点でMECEを考えることは、要素の抜け漏れが少なくなる可能性が大いに期待できると感じました。 また、ロジックツリーのコツ・留意点として、「感度の良い切り口をたくさん持っておく」という点が重要です。業界や会社ごとにキーとなる要素があるため、その観点をロジックツリーに組み込めるよう、日ごろから情報収集に努める必要があります。 分析スキルをどう向上させる? 分析を行う際、目の前の情報に飛びついて、初めから原因を勝手に予想してしまい、本質を捉えきれていない分析を行うことが度々ありました。面倒くさがって「What」を適当にしてしまうこともありましたが、分析は「What」と「Where」にこそ時間をかけて問題を特定すべきだと感じました。しかし、「What」を考えるにあたって、まず何をMECEを意識して分解するかが重要になります。自身の仕事においても、まず「What」「Where」のステップのクオリティを上げられるように努めていきたいです。 学びを実務にどう生かす? WEEK2で学んだことの共有やロジックツリーのフレームワークを活かせる業務の選定、過去のキャンペーンを取り上げて、講義と並行して学んだことをアウトプットできるような分析の場を設けることにも取り組みます。講義終了後、チームに共有します。

データ・アナリティクス入門

問題解決のステップで成果を出す方法

問題解決プロセスの重要性は? 問題解決のプロセスについて学んだ内容を振り返ります。 まず、問題解決のプロセスには、以下の4つのステップがあります:What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているのか)、How(どうするのか)。この順序を守りつつ、ステップを踏んでアプローチすることが大切です。ただし、このステップは必ずしも順番通りに進むわけではなく、行ったり来たりすることがあります。 問題を定める方法とは? 最初にすべきことは、問題を定めることです。あるべき姿と現状とのギャップを把握し、数字を使って売上と予測を比較することで具体的にギャップを捉えます。そのギャップの間で現場で何が起きたのかを確認することも重要です。 フレームワークの活用法を知る 次に、問題がどこにあるのかを整理する際には、ロジックツリーやMECE(Mutually Exclusive, Collectively Exhaustive)などのフレームワークを使うと、漏れなく検討するのに有効です。 問題解決の優先順位をどうつける? 現在、サービスに対するアンケート分析を行っていますが、対象が広範囲であるために論点がバラバラになり、打ち手も行き当たりばったりになっていました。今回学んだ方法を使い、まず問題を複数洗い出し、その中で本当に解くべき問題に優先順位をつけ、チーム内で合意を得ることが必要です。そして、解くべき問題について、学んだ各ステップを踏んで考えます。 MECEとロジックツリーの実践 考える際には、MECEとロジックツリーを使ってみましょう。まず手を動かして使ってみることで、理解を進めることができるでしょう。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

戦略思考入門

差別化の鍵はターゲット明確化!

良い差別化施策の基盤は? 今週の学習を通じて、良い差別化の施策には、まずターゲットとなる顧客を明確にすることが重要だと学びました。その上で、顧客にとってどのような価値があるか、競合他社と比較した際の優位性、そしてその実現可能性や持続可能性が検討されたものであることが求められます。私はこれまで、おおざっぱな打ち手を考えがちでしたが、ターゲット顧客の明確化から始めることで、戦略に一貫性を持たせることの重要性を理解しました。また、自社の強みをしっかりと整理するためにフレームワークを活用する必要性にも気づかされました。 自社の強みを見つける方法は? ターゲット顧客を明確にすることが差別化の基盤であることを理解し、自社の強みをフレームワークで整理するという実践が価値を高めるためのブレイクスルーとなるでしょう。 カスタマーサポートでの差別化は可能? 昨年末から現在まで、自社のサービスや事業において、どう新たな価値を提供していくべきかを考えてきました。特にカスタマーサポートやカスタマーサクセスにおいて、その領域でどう差別化された強みを活かせるのかが大きな課題です。この点に関しても、今回学んだ視点や手順に沿って、特にVRIO分析を用いて強みを整理し、ターゲット顧客を明確にすることで、より広い視野で戦略を考えたいと思います。 新サービスのアイデア生成手順 まずは、自社のサービスや事業における強みをVRIO分析で書き出します。その後、ターゲット顧客を明確にし、新しいサービスや価値のアイデアを生み出します。そして、それに基づいてカスタマーサポートやカスタマーサクセスがどう動いていくかを検討し、新しいアイデアを反映させて方針をまとめ上げたいと考えています。

マーケティング入門

ヒット商品を生むための要件解析

ヒット商品を生むには? 商品がヒットするためには、多くの要素が絡み合う必要があると感じました。商品を生み出すこと自体は比較的容易ですが、ヒット商品に育てるのは簡単ではありません。まず、競合と比較して自社の強みが発揮できている分野かどうかが重要です。次に、ネーミングで商品をアピールし、親しみやすさを感じさせることが求められます。また、顧客の真のニーズを捉えているかどうか、つまりカスタマージャーニーを考慮し、単なるウォンツではなくニーズを理解することが大切です。顧客が支払ってでも解消したい不便(ペイン)を、利益(ゲイン)に昇華させることが求められます。 BPOとBPRの重要性 業務プロセスのアウトソーシング(BPO)や業務改革(BPR)も、クライアントのペインポイントを見つけ、それをゲインポイントに昇華させることが求められる事業だと感じます。特に、将来的に外部収益を伸ばしたい分野ではもちろん、現在の自社内の業務移管においてもこの視点が重要です。何がペインポイントなのかを追求し、それをゲインポイントに変換する方法を見つけ、実現につなげることが大切です。 効率化にどう取り組む? ステークホルダーが業務移管やBPOを希望する業務には、必ずペインポイントが存在すると思われます。(面倒なことや時間がかかること、コア業務でないから外部に委託したいなど)AIや自動化を用いた業務効率化がゲインポイントとなるのか、それとも業務フロー内に決定的なペインポイントがある場合を想定する必要があるでしょう。ただし、単純に工数の圧縮を目的にするのではなく、真のペインポイントを見つけ、それをゲインポイントとして昇華させる視点を持って、日々の業務に取り組むことが求められます。
AIコーチング導線バナー

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right