アカウンティング入門

数字とストーリーで描く成長戦略

損益の分類はどう? かかった支出が損益計算書上で各要素に分類され、それぞれの分類方法を理解することができました。利益を上げるためには、ビジネスのコンセプトに応じてどこを改善すべきかをストーリーとして捉えると分かりやすいという点も納得できました。 会社の方向性はどう? また、現在務めている会社の方向性や目標が、今後PLのどの部分に大きく影響を与えるのかを予想し、理解したいと感じました。同時に、自部門でどのように貢献できるのか、会社の利益と企業価値向上の両面から目標を設定する必要性も実感しました。 市場の動向はどう? さらに、会社の方向性と市場での立ち位置を踏まえて、自社の損益計算書を過去と比較しながら、どの点が伸びているのか、また落ちているのかを数字で読み解くことで、市場の流れや将来の自社の位置付けを予想してみる重要性について学びました。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

データ・アナリティクス入門

仮説と実践が導く成果の道

成果をどう目指す? データ分析を行う際、まず数字やデータに飛びつくのではなく、最終的にどのような成果を出したいのか、何を比較すればよいのかといったアウトプットのイメージを明確にし、客観的に整理することが重要だと感じました。実務での実践力と、学問としての知識習得の両立を意識する必要性も再認識しました。 論点はどう整理する? また、コンサル業務においては、定量分析を進める中で迅速に論点を明確にし、全体の論点を中論点・小論点に分解することで、検証しやすい構造を作ることが求められます。そのため、まず仮説を立て、正しい比較対象に基づいたデータ分析を実施することが大切だと考えています。さらに、このような思考法やプロセスをジュニアメンバーにも積極的に共有し、育成に役立てていきたいと思います。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

データ・アナリティクス入門

納得を呼ぶ仮説とデータの魔法

仮説の種類は何? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があると学びました。また、複数の仮説を立てることや、各仮説が網羅的にカバーされているかを確認する点がポイントとして挙げられています。 どんなデータが大切? さらに、分析や資料作成の際には、比較するためのデータ収集を行い、反論を排除する情報にまで踏み込むことが重要です。自分に都合の良いデータだけを集めるのではなく、あらゆる角度から納得感のある結論に導くために、仮説を立証するためのデータ収集と加工を繰り返すプロセスが必要だと感じました。また、報告や資料作成の際には、意識的に反論者の視点を取り入れることで、より説得力のある分析ができるようになると確信しています。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right