データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

戦略思考入門

選択と集中で価値を最大化する考え方

選択と集中の再評価は? 選択と集中の重要性を再認識しました。絞ることで価値が高まるという点についても、具体的な航空会社の事例は削除しましたが、大いに納得しました。 新参者の意見をどう活かす? 新参者の意見を聞くという視点が新鮮で、餅は餅屋に任せる勇気が重要だと感じました。多くのケースでこの点が実現できていないことや、提案できていない現状を認識しました。 基準のない選択の課題 選択に向けた方針の整理もまた重要です。基準無き意思決定が場当たり的なものになることを痛感しました。基準を設けるための論点の整理が必要であり、拠り所となる言葉が二律背反の中から生まれることを理解しました。 トレードオフの考え方の鍵は? 選択と集中を実践する上でトレードオフの考え方が重要であり、効用の最大化ポイントを見つけることが鍵です。構造化してボトルネックを発見することがトレードオフの効用の最大化につながり、効用の無差別曲線の考え方がボトルネック特定に役立つと気付かされました。 戦略と方針の整合性は? 各種戦略や戦術を練る上で前提となる方針を明確にすることが、チームでの営業戦略やクライアント企業での各種戦術の展開に適応できると感じました。方針に沿った選択と集中、すなわち「捨てること」の提案もまた重要です。クライアント企業が本当にマーケティング体制を持つ必要があるのか、その選択が何に価値を載せるべきなのかを提言することが求められます。 自身の営業方針の設定法 自身の営業活動においても、外部環境や内部環境の整理、自身の成長目標と照らし合わせて方針を明確に設定する必要があると感じました。これにより、アプローチすべきターゲットランクやテーマを導き出すことができます。 クライアント支援での意思決定の明確化 最後に、クライアント企業の現在の支援においては、今やっていることの方針や意思決定に基づいた理由を明確にすることが重要です。その意思決定が難しい場合、その難しさの論点を洗い出すことが必要です。

クリティカルシンキング入門

問いが拓く未来への一歩

根本の問題は何? 施策を決めるためには、まず何が問題なのか、その根本となる「イシュー」を明らかにする必要があります。具体的には、課題を分解し、休日と平日、ハンバーガーとサイドメニュー、若者とシニアというように、どの要素に注力するかを明確にすることが大切です。 論点の問いはどう? また、その時々に合わせたイシューを設定し、そのイシューに沿った施策を実行していくことが求められます。論点は「問い」から始め、なんとなくではなく、今自分が何を考えているのかをしっかり問いかけるところからすべてがスタートします。 問いを誰と共有? 問いは決して忘れてはならず、常に認識し続けることが重要です。スタート時の問いから大きく外れないようにするため、仲間の意見を借りて、組織全体でその問いを共有するようにしています。特に、現場での改善活動においては、中心となる考え方を常に意識するよう努めています。 問いからイシューへ? 現状では、答えを出すべき問いは、そのままイシューにつながっています。イシューを特定する際には、問いの形にし、具体的に考え、一貫してその問いに向き合い続けることが大切です。意識を欠くと、議論がずれてしまうためです。 週次報告はどう? 日々の業務では、「問い」から始める習慣が根付いており、現場の課題や改善点を週次レポートにまとめ、情報を共有しています。また、毎月提出する改善報告では、課題の見える化を図り、改善サイクルを確立することを心がけています。店長やチーム全体で課題を共有し、現場主体の改善行動につなげるため、フィードバックを反映した具体的な改善策に結びつけています。 視点の選び方は? 店舗改善においては、どの視点でイシューを決定するかによって、行動や成果が大きく変わってきます。まずは問いから入る習慣を持ち、現場を当たり前とせずに疑問視する視点を身につけることが重要です。問題を定義し、論理的に情報を整理しながら、現状に合った施策かどうかを判断し、仲間と共有することが成功の鍵となります。

デザイン思考入門

共感でひらくアイデアの扉

プロトタイプは何故有効? プロトタイプを作成することで、イメージがより具体化され、テストの段階で得られるフィードバックが非常に有益であると実感しました。性格や背景の異なる第三者に評価していただくことで、自分では気づかなかった改善点が明らかになり、製品やサービスのブラッシュアップに大いに役立つと感じました。 テストの流れはどう? また、テストのプロセスは、普段実施しているレビュー作業に似た面がありました。レビューでは、作成した提案書や設計書に対して指摘を受けつつ改善を重ねるため、限られた目的や範囲の中で行われる点が共通しています。一方、デザイン思考における「共感」「課題定義」「発想」「試作」「テスト」の各プロセスは、業務で何気なく行っている点とも重なっており、日常の仕事に応用できる部分が多いと改めて認識できました。 デザイン思考の柔軟性は? デザイン思考では、基本のプロセスの流れがあるものの、非線形に繰り返す柔軟性が大きな魅力だと感じました。議論が行き詰まってしまうリスクもありますが、「共感」や「協働」を重視することで、しっかりとコンセプトを捉え、効果的にアイデアを育てることが可能です。人間中心のアプローチやビジュアライズ・プロトタイピング、そして共感の連鎖といった視点が、より良い成果につながると理解しました。 多様な意見はどう? さらに、他の受講生が作成したプロトタイプを通じて、多様な背景を持つ人々の意外なアイデアに触れることができたのは、大変参考になりました。一人では気づけなかった発想が生まれ、異なる視点を取り入れてアイデアを育てることが、新たな解決策へとつながると実感しました。 新ビジネスは何故大切? 新たなビジネスプランを検討する際、リーダーシップやチームビルディング、経営戦略、マーケティングなど現実的な調整が必要となる中で、まずはアイデアの創出が何より重要であると再認識できました。デザイン思考で学んだ手法は、普段の業務においてもそのまま活用できる貴重なものだと感じています。

データ・アナリティクス入門

一歩ずつ踏む問題解決の法則

解決傾向に気づいた? 私がWEEK1で振り返った際、「自分が解決したいポイントや進めたい施策にすぐにフォーカスして、アウトプットに繋げてしまう傾向」に気づきました。この課題に対する解決策が、WEEK2で解説されており、以下の点が特に印象に残りました。 どうして段階を踏む? まず、問題が起きた際にはいきなり手段(How)に飛びつかず、【問題解決のステップ】を順に踏むことが大切だと学びました。具体的には、WHAT→WHERE→WHY→HOWの順序を守り、実際に何が起こっているのか、どこで、なぜ問題が発生しているのかを明確にした上で、打ち手を検討するのが鉄則です。思いつきのアイデアに頼ると、運任せになりがちであるため注意が必要です。 全員で何を合意? 次に、WHATの設定においては、関係する全員で「何をあるべき姿とするか」や「どのようなギャップが存在するか」について合意することが重要だと感じました。定量的な指標が提示されていると、より明確な認識合わせが可能になります。 ロジックで整理する? また、問題解決のプロセスを体系的に進めるために、【ロジックツリー】を活用して問題を分解する方法が有効だと分かりました。ロジックツリーを用いることで、問題の全体像が把握しやすくなり、MECE(漏れなく、ダブりなく)に情報を整理する意識が求められます。 感度はどう磨く? 一方で、動画では「感度の良い切り口」を多数持っておくことが勧められていましたが、その「感度」を高めるのは容易ではないという点は難しさを感じました。一つの案件について、部門や職階の異なる複数の方々に説明し、理解を得る必要がある中で、この学びを活かし、まずは問題解決のステップを順を追って実践することが、案件の進行をスムーズにするために重要であると考えています。 問題解決、どう進む? これからは、ロジックツリーで問題の全体像をつかむところから始め、関係者間でWHATの合意形成をしっかり行うことを心掛けて、問題解決に取り組んでいきます。

クリティカルシンキング入門

小さな分解で見える大発見

分解で見える真実は? 分解を行うことで、従来の全体からは見えなかった事実を得ることができると実感しました。例えば、年齢などの区分を均等に分けるのではなく、生データの特徴に合わせた切り口で分解することが重要であると知り、自分自身も改善すべき点だと思いました。実際、いくつかの切り方を試して分析を重ねることで、より適切な理解が深まると感じています。 切り口は何が違う? また、従来は層別分解が得意でしたが、変数分解やプロセスごとの分解など、異なる切り口も学ぶことができました。分解を始める前に全体像を明確に定義すること、すなわち目的を明確にするというクリティカルシンキングの基本が、データ分析においても非常に重要であることを再認識しました。 ウェブの解析はどう? 私の業務では、ウェブシステムのパフォーマンス分析や運用業務の効率化に取り組んでいます。パフォーマンス分析では、レスポンスタイムやエラー率など、様々な指標を機能別、リクエスト別、時間帯別に分解して検証することで、新たな知見を得る可能性が広がっていると感じています。 業務効率の見直しは? また、運用業務の効率化においても、単に忙しさを感じるのではなく、実際に業務に費やす時間を計測し、プロセスや対応内容ごとに分解することで、根本的な原因や改善ポイントが見えてくると実感しています。 ラベリングはどう大切? さらに、データを正確に分解して活用するためには、収集や計測の段階で最小単位までしっかりとラベリングすることが不可欠だと感じました。全体の傾向は平均や合計から把握できるものの、細分化したデータを分析するには、各サンプルがどのグループに属するのかが明確でなければなりません。 知見の信頼はどう生む? そのため、今後も日常的にデータを分解して分析することを念頭に置き、様々な切り口から知見を得られるよう努めたいと思います。いかなる知見が得られても、それが確かなものであるか否かを常に疑い、裏付けを求める姿勢を維持していきたいと考えています。

クリティカルシンキング入門

発想の壁を壊す3つの視点

思考癖に気づいた理由は? どんな人にも思考の癖があり、無意識のうちに制約や偏りが生じることを改めて認識しました。クリティカル・シンキングを学ぶことで、こうした癖を発生させない頭の使い方の土台を築く必要性があると感じました。また、自分だけでなく相手にも思考の癖があるという点に気づかされ、大変勉強になりました。 どの技法が役立った? テクニックとしては、①「3つの視」(視点、視野、視座)を意識することで思考の幅が広がる点、②MECEの考え方で抜けや重なりなく物事を整理する必要性、③ロジックツリーを用いて部分的な集まりとして捉え、分解する手法が印象に残りました。これらの手法を取り入れることで、偏りなく課題解決に取り組む姿勢が身につくと感じました。 なぜ発想が固まった? ワークを通して、自分の思考力や発想力の弱さを痛感しました。1つの案を深堀することはできても別角度からの案出しが難しかったため、「3つの視」を意識し、思考が詰まったときは連想ゲームのようなアプローチで考えを広げる工夫を取り入れたいと思います。 なぜ視点を変える? また、同じサービスでも顧客ごとに状況が異なるため、多角的な視点が重要だと実感しました。普段は直感で判断してしまいがちですが、「なぜその直感が働いたのか」を言語化することで、再現性や対応の品質を向上させられると考えています。 どうすれば本音掴む? 文字によるコミュニケーションにおいては、文面だけでは相手の本当のニーズがつかみにくい場合があるため、相手の思考の枠組みを意識しながら対応することで、より的確なサポートが可能になると感じました。 他視点はどこに? さらに、課題整理の際には、自身の感覚だけで解決策を検討する場合、影響範囲の考慮が不足しているケースが多いことに気づきました。今後は、直感だけに頼るのではなく、「他にどんな見方があるか?」と問いつつ検討し、抜けや重なりのない整理を心掛けることで、思考力の向上につなげたいと思います。

クリティカルシンキング入門

もう一人の自分を育てる学びの旅

学びはどんな内容? WEEK1の学びを整理してみて、以下のような重要なポイントに気づきました。 批判的思考って何? まず、「もう1人の自分を持つ批判的思考」が重要です。思考には偏りがあり、ついつい自分が考えやすい方に流されがちです。しかし、みんなが同じように考えているとは限らないことを意識すべきです。そのため、主観的ではなく、客観的に考える姿勢が必要です。思いつきで判断するのではなく、説明責任を果たすために3つの「視」(視点、視座、視野)を使って視野を広げることが求められます。 現状分析はどう? ケースワークを通じて学んだこととして、現状を細かく分析し、理想的な姿をしっかりと見据えることが大切だと感じました。「問い」を意識し、今何を課題にするべきかを見極めることを忘れてはいけません。フレームワークを活用することはもちろん重要ですが、それに固執しすぎない柔軟な姿勢も必要です。 他者の意見はどう? グループワークを通じては、客観的に物事を考えるために他者の意見を聞くことが近道であると感じました。相手がその考えに至った理由を聞くことで、今後自分が客観的に考えるためのヒントになります。 営業会議はどう進む? 営業会議においては、数値目標達成に向けて行動を決める際、過去の経験に頼りすぎると、やるべきことが毎回同じになってしまう傾向があると気づきました。このため、課題を特定する際には、まず要因分析を丁寧に行い、1枚の紙に簡潔にまとめて、伝えるべきことを結論から述べ、その後に根拠を伝える姿勢が効果的です。 書類作成ってどう? 提案書や報告書においては、短くまとめることが重要です。提案書はワンペーパーにまとめ、視覚的に認識しやすいよう工夫します。報告書も同様に、ワンペーパーで読み手の立場に立って、文章やグラフを工夫することが望ましいです。 メールは要点ある? 最後に、メール発信時は、指示が長くなりがちなので、簡潔に結論を先に述べ、理由は3点以内にまとめることを心掛けます。

マーケティング入門

戦略の切り分けが未来を拓く

セグ分けの理由は? セグメンテーションでは、自社に合った切り分け方を考えることの重要性を再認識しました。法人向け商品の場合、規模や外資・日系の違いなどで分けるといった視点は、非常に実践的だと感じます。また、顧客企業の規模、製品の市場、製品サイズ、生産ロットの違いなど、具体的な分類軸が挙げられており、これらを基に自社の戦略を練り上げることが大切だと思いました。 ターゲットはどう見る? ターゲティングに関しては、6R(市場規模、成長性、競合状況、優先順位、到達可能性、反応の測定可能性)という評価基準のうち、特に市場規模、成長性、競合状況の3点が鍵になるとの考えに納得しました。これにより、市場の魅力と自社が勝ち残る可能性とのバランスを適切に判断して、新たなターゲット層を掴む戦略の重要性を学びました。 強みはどう伝わる? ポジショニングの部分では、2つの要素を縦軸横軸に配置したポジショニングマップを用いる手法が印象的でした。単一の価値だけでは競合との差別化が難しい場合も、複数の価値を組み合わせることで独自の魅力を生み出せるという点が参考になりました。顧客の視点から自社の強みが明確に伝わるよう工夫する必要があると感じています。 事例から何を見る? さらに、航空機業界向けとして開発された機械が実は他の業界からの引き合いが多かった事例は、各ターゲットの市場規模、成長性、競合の状況、そして開発品のメリットを具体的に把握することの重要性を改めて認識させてくれました。今後はリサーチ部門との連携を深め、より精度の高いターゲット選定を実現していきたいと考えています。 有効な策は何か? 特にBtoBのマーケティングにおいて、どのようなセグメンテーションが有効なのか、他社の事例や先輩方の経験を伺いながら、自社の戦略に反映させていくことが今後の課題だと感じました。全体として、戦略的な市場分析の基本的な考え方と具体的な手法について、非常に実践的な学びを得ることができたと思います。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで未来を描くコツ

キャリアの意味は? キャリアとは単に仕事の経歴を指すだけでなく、仕事を通じて培われたキャリアアンカーのような価値観を内面から理解し、組織のニーズと自身のニーズを調和させながら生き抜いていくことを学びました。これにより、自分自身と周囲のメンバーと将来についてどのように取り組んでいくかを考えるきっかけとなりました。 リーダーはどう考える? リーダーが自分のキャリアに真剣に向き合うことで、リーダーシップがより発揮されやすくなります。リーダーが自身に向き合うことで、メンバーがより主体的に仕事に取り組む環境をサポートできるのです。キャリアを考える際には、個人と組織のニーズの調和が重要です。 アンカーの役割は? キャリアアンカーには、特定分野の専門性や管理能力、自律性、安定性、創造性、挑戦精神、社会貢献、生活様式など、8つの要素があります。これにより、現在の自分の状態と理想のキャリアに向けてどのように進むべきかイメージできます。ただし、キャリアアンカーは万能ではなく、その要素自体に良し悪しはないため、慎重に考慮する必要があります。 生存戦略はどう? キャリアサバイバルは、変化の激しい環境や複雑な人間関係の中で、個人に求められる役割をどのように見通すかを分析する手法です。目標に向かって必死に進みながらも自分の存在価値を確立するという意味合いがあります。仕事の棚卸や環境変化の認識、仕事の見直しを段階的に行い、これに伴ってキャリアアンカーを再確認し、周囲と話し合って理想のキャリア管理を行います。 自己開示は大切? まず、自分のキャリアに向き合い、メンバーに対しても自身のキャリアを開示することで、メンバーが自己開示し、仕事に主体的に取り組める環境作りをすすめます。そして、メンバーとのやり取りの中でキャリアアンカーの考え方を応用し、リーダーシップのスタイルを模索することが重要です。さらに、キャリアアンカーの考え方は、やる気の理論や衛生理論との関連性を理解するためにも役立ちます。

リーダーシップ・キャリアビジョン入門

実践で磨くリーダーシップ

リーダーシップと管理は違う? リーダーシップとマネジメントは明確に異なるものであると学びました。リーダーシップは変革を促し、より良い行動変容を引き出す力がある一方、マネジメントは限られたリソースを効率良く活用するためのコントロール手段であると認識しています。 マネジリアルグリッドで何を見直す? また、マネジリアルグリッドを用いることで、業績と人への関心という2つの軸から自分の行動を振り返る重要性にも気づかされました。以前は無意識のうちに捉えていたものの、意識してみると自身の足りない部分や十分な部分が明確になり、今後はこの2軸を評価指標として活用していきたいと考えています。 パスゴール理論は何が分かる? パスゴール理論については、リーダーシップを発揮する際に把握すべきポイントがシンプルに整理され、非常に理解しやすくなりました。チームメンバーが置かれている状況やその特性は常に変化するため、柔軟に計画を見直していくことの重要性を改めて実感しています。 支援行動で何を掴む? それぞれの状況に応じて目標達成に向けた業務を進めるためには、支援型の行動がリーダーシップ発揮の鍵になると感じています。人の特性や環境を正確に把握し、共通の課題を見出すことで、互いに必要な支援ができる体制作りが大切だと考えています。 情報精緻化はなぜ重視? また、病院での自社医薬品の導入に際しては、必要な情報を精緻化することを重視し、情報が得られた際にはその出所や取得方法をしっかりと共有するよう努めたいと思います。 チーム課題の対策は? 自分の業務は個人単位で完結しがちなため、チームとして目標に向かう経験が少なく、興味もある反面、チーム内でコンフリクトが発生することも少なくないと感じています。チームで適切なタスク配分を行っている方々にとって、この課題の解決は非常に重要だと考えます。もし具体的にどのようなメンバー構成で、どのような対策を講じているのか事例があれば、ぜひ教えていただけると嬉しいです。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

「認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right