クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

視点を変える学びの切り口

データ収集の視点は? これまで、自身の仮説を実証するためにデータ収集に終始していたことを痛感しました。仮説以外の視点でどのようにデータを集めるべきかが分かっていなかったため、今回「仮説を考えるためのフレームワーク」を学び、今後のデータ分析に活用できると感じました。また、ある仮説に対して別の仮説が成立する可能性への反論を防ぐため、複数の仮説を異なる切り口で立てることの重要性を再認識しました。たとえば、■3C(Customer=市場・顧客、Competitor=競合、Company=自社)や、■4P(Product=製品、Price=価格、Place=場所、Promotion=プロモーション)を利用する考え方は、データ収集の際に既存データのみならず、新たなアンケートやインタビューを通じた情報獲得にも役立ち、説得力のあるデータを生み出すための行動力が養われたと感じています。 社内参加の課題は? また、社内で実施している任意参加のセミナーや施策について、毎回参加する社員と全く参加しない社員の二極化が進んでいる現状を踏まえ、より多くの社員の参加を促すために、3Cや4Pの視点で検討を行いたいと考えています。具体的には、■3Cでは、Customer(市場・顧客)として社員、Competitor(競合)として同時開催予定のイベントの有無、Company(自社)として社員のニーズが満たされているかを検討し、■4Pでは、Product(コンテンツが社員のニーズを満たすか)、Price(参加に見合う価値があるか)、Place(開催方法が参加しやすいか)、Promotion(社内への情報周知が十分か)といった観点で施策の企画を進めます。 意見共有はどう? まずは、今回の学びを一緒に企画・運営するメンバーと共有した上でディスカッションの場を設け、これまでの検証に不足していた視点やデータを補完します。特に、本社以外の全国の拠点の社員にとっては日々のコミュニケーションが行き届いていないため、インタビューなどを通じて意見を聴く機会を設け、次年度に向けた施策の改善に努めたいと思います。

クリティカルシンキング入門

問い続ける力でクリティカルシンキングを極める

どうして問いは大切? 上長が6月に交代して以来、「問いは?」と常に問われる機会が増えました。なぜ「問い」が重視されるのか当初は理解できなかったのですが、クリティカルシンキングがその背景にあることを講義を通じて理解しました。この講義を受けることで、クリティカルシンキングを身につけ、事業、ビジネス、私生活全般で活用していくために、特に「3つの姿勢」を意識することが重要であると認識しました。 どうして姿勢が大事? まず、一つ目は「目的は何かを常に意識する」ことです。次に、「自他に“思考のクセ”があることを前提に考える」こと。特にこの二点目は、慣れや習慣も影響していると考え、常に意識して取り組む必要があります。そして最後に「問い続ける」ことです。 なぜ経営で問う? 私は経営企画の仕事でクリティカルシンキングが必須のスキルであると感じています。業務の中で、事業環境や3C分析といったフレームワークを用いた調査・分析においても、クリティカルシンキングを用いることで、内容に深みを持たせることが可能です。また、経営層への提案や承認を得るための資料作成においても、短時間で理解と納得を得るためにロジカルシンキングやクリティカルシンキングを活用できると考えます。特に経営層は費用対効果や投資対効果に注目する傾向があるため、その効果を問い続けるストーリーを論理的に構築することで、納得を得られるのではないかと思います。 どんな問いが響く? 日常業務の提案書や稟議書の作成においても「3つの姿勢」を意識し、思考力を高めることが可能です。また、私生活でも「なぜこの商品が売れているのか?」「なぜこの店が人気なのか?」といった問いを持ち続けることが思考力を高めるきっかけになります。加えて、思考のクセが年齢とともに固定化していると自覚する部分もあるため、社員や知人、友人とコミュニケーションを取り、広くアイデアや情報を集めることを心がけたいと思います。そして、上長からの業務依頼に対しても、その背景や目的を常に問いかけ、業務を効率的に進める意識と姿勢を持ち続けたいと考えています。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

デザイン思考入門

多様な視点で新発見のヒント

方向性はどう決める? 現場の課題改善のため、日々ブレインストーミングを実施しているものの、方向性が定まらず意見が偏ったり、アイデアがなかなか出にくい状況に陥ることがありました。そこで、今回、SCAMPER法をはじめ、シナリオ法やペーパープロトタイピングを用いて、カスタマージャーニーマップを想定しながらアイデアを考える手法を学びました。単に感覚任せでアイデアを募るのではなく、明確な視点を示しながら進めることで、より多様で有効なアイデアを導き出せることを実感しました。 実践はどう活かす? 実践演習では、まずSCAMPER法により概念的・多角的な視点からアイデアを出し、その後、技術的な実現可能性に着目したアイデア出し、最後に実現方法に焦点を当てたアイデア出しという流れで進めました。SCAMPER法は、直接的なアイデアが引き出しにくい場合でも、さまざまな視点を提供することで、思わぬアイデアを引き出すきっかけになると学びました。また、この方法により、メンバー間のバイアスによる意見の偏りも低減できる点が大きな収穫でした。 実現法はどう見える? 技術面で「どのように実現できるか」を考える過程では、SCAMPER法だけでは出なかった具体的なアイデアが登場し、視点の転換がアイデアの幅を広げる効果を実感しました。この視点の変化が、より実現性のあるアイデアを導く鍵であると感じました。 他部門との協力は? さらに、実現方法の検討段階では、他部門や他社との協力を視野に入れることで、課題を再確認し、より適切なアプローチが可能になると学びました。これにより、議論の幅が広がり、現状の課題に対して新たな解決策を見出す手法として非常に有意義であると感じました。 製品開発の秘訣は? また、製品コンセプトを考える際には、バリュープロポジションの明確化が不可欠であると再認識しました。万人にウケるものづくりは難しいかもしれませんが、企業の理念を大切にし、ターゲットを明確にすることで、より良い製品開発が実現できると学び、今後の実務に積極的に活かしていきたいと考えています。

データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

戦略思考入門

選択肢を絞る重要性を再認識

選択と集中、どう活かす? 「選択と集中」という言葉を聞くと、私たちはしばしば「最適な方法を選ぶ」ことだけに注目しがちです。しかし、選択肢が多ければ多いほど、最適な方法の選出にも多くの時間がかかってしまいます。そこでまずは不要なものを省き、選択肢を絞り、その道筋をよりクリアにすることが重要だと再認識しました。 無意識の選択能力を仕事にどう活かす? とはいえ、これは日常生活でも常に実践していることではないでしょうか。例えば、飲食店でメニューを眺めるとき、最初に決定するのは食べたくないものを避けることです。このような無意識の選択能力を仕事に活かせば、選択肢を減らしフォーカスすることは比較的容易なはずです。 組織での無駄をどう排除する? しかし、現実には、慣習や惰性で続けている業務が多く存在します。一人で行っている業務ならば整理もしやすいですが、組織全体となると意見が衝突し、事なかれ主義に陥ることも少なくありません。定期的に見直しを行う仕組みが必要だと感じました。動画で紹介されたように、新参者の意見を反映させるのも一つの手段です。 私自身、現在の部署に移ってから1年が経ちますが、慣習や忖度で行われている業務に対して、批評的な意見を述べる立場にあります。限られたリソースを最大限有効活用するため、無駄を排し、経営効率の改善を図ることが求められています。 目的達成のための共有は必要? しかし、忘れてはならないのは、無駄を省くことが目的ではないということです。これは、事業や組織として目標を達成するための手段に過ぎないのです。目的の明確化が重要です。既存のやり方や業務、取引など、良いものも当然ありますが、多くは思考停止状態で繰り返されています。それが「仕事」として共通認識になり、無駄に時間を埋めてしまうのです。 目的の共有を頻繁に行い、組織全体の方向性を合わせることが重要です。そうすることで、「捨てる」も「選択」も個々の意見や主張に偏らず、共通の判断が下せるようになります。目的達成のために、不要なものを捨てるという共通認識を持つことが必要です。

データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

リーダーシップ・キャリアビジョン入門

部下の成長を促す「問いかけ術」

エンパワメントの学び方 エンパワメントに関する学びを通じて、各段階での問いかけや考慮すべきポイントが明確になり、大変勉強になりました。まず、仕事を任せる際には、相手が「できそうか」を見極めるための問いかけが必要です。そして、進行中の仕事がこのまま任せられるか、手助けが必要かを判断するためにも問いかけが重要です。さらに、目標設定における本人の参加を促進するための問いかけも必要です。良い目標設定には、具体性、定量、意義、そして挑戦の要素が必要であることを学びました。 仕事への問いかけをどう活用する? これまで、仕事を任せる際の問いかけは意識していましたが、それ以外についてはあまり意識できていませんでした。今後は、仕事の進行や目標設定におけるモチベーションを高めるために、これらの問いかけを意識的に活用していきます。良い目標設定を行うためには、相手をよく理解した上で、適切な内容を的確に伝える必要があります。これは一人ひとりに対して行うには大変ですが、経験を積んで少しずつ身につけていきたいと考えています。 メンバーの自律性を引き出すには? 具体的な実践として、ジュニアメンバーが新しいプロジェクトに取り組む際、本人がゴールを正しく認識できているか確認し、参加を促すようにしたいです。この問いかけにより、メンバーが自律的に目標達成に向けて行動する姿勢を引き出せると考えています。また、目標設定の際には、具体性や意義などの要素を含めるように会話を通じてサポートします。こうして、メンバーが目標に納得し、無理なく実行に移せるようにします。自分自身の目標設定にも、このアプローチを取り入れ、組織全体が納得できる目標を持てるようにしたいです。 円滑な組織運営を目指して さらに、週次の会議では各メンバーが活動を報告する際、ゴールの正しい認識や自律性を促す問いかけを行います。来年度の組織戦略における目標設定では、メンバーのスキルや経験に基づいた納得感の高い目標設定を追求し、ジュニアメンバーにエンパワメントを行い、本人が計画を策定できるよう支援していく予定です。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

「認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right