データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

データ・アナリティクス入門

MECEで切り拓く論理の未来

MECEと分解のポイントは? MECEの手法を通して、漏れなく重複のない考え方の重要性を学びました。また、ロジックツリーを用いることで物事を分解して考える方法にも触れました。ただし、細かく分解しすぎるのではなく、適度な粒度で整理することがちょうどよいと感じました。 製品サポートはどう変わる? 個人的な感覚に頼るのではなく、フレームワークを活用することで、よりロジカルかつ具体的に意見を伝えることができると思います。私の担当している製品サポート業務では、お客様からの問い合わせ対応や内部連携の課題があるため、業務をさらに整理して取り組む必要があると感じました。 課題解決のヒントは? 今後は、ロジックツリーを活用して課題を分解し、詳細に洗い出してみます。さらに、MECEの観点から整理されているかを再確認し、どこに課題があるのかを特定した上で、具体的な解決策を検討していく予定です。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

クリティカルシンキング入門

問いが拓く新たな視野

本当の考えは何? 思考を整理するために、まず自分の考えに対して「本当にそれで良いのだろうか? 他の可能性はないか?」と問いかけることの大切さを学びました。この方法により、普段の考えにもう1人の自分を加え、視野を広げる手法の有効性を実感しました。 別の切り口は? また、3つの視点とMECE的な分析を取り入れることで、物事を多面的に見るスキルが向上しました。具体的には、求人広告の改善提案など仕事において、普段と異なる切り口でアプローチし、複数の改善案を迅速に提示できるようになる効果を感じています。そのため、自分の思考に対して常に「なぜその選択をするのか」「他の案はないか」を問い続ける習慣を身につけることの重要性を改めて認識しました。 次はどう実践? この学びを今後の業務や日常の問題解決に活かし、より多角的かつ柔軟な思考を実践していきたいと考えています。

デザイン思考入門

アイデアの種が芽吹く瞬間

ブレインストーミングはどう? ブレインストーミングは、取り組みやすい手法だと感じました。個人でも実践できるとのことで、日々の業務のなかから一つ以上の要素を抽出し、それに対して自分なりの改善点をたくさん考えてみることができそうだと思いました。 SCAMPER法はどう? また、実践演習ではSCAMPER法を用い、普段意識しない視点から物事を考える機会が得られました。十分に洗練された状態のものに対しても、「もっと削れないか」や「代わるアイデアはないか」といった異なる視点から検討することで、さらに良い結果が生まれる可能性を実感しました。 どうやって大量発想する? 単純なアイデア出しであっても、やみくもに考えるのではなく、さまざまな手法があることを学びました。いずれにしても、最初はアイデアの量を重視し、まずはたくさんの考えを出すことに専念しようと思います。

データ・アナリティクス入門

小さな実験で見えた業務改善

A/B分析はどう見る? A/B分析の手法について理解が深まりました。分析時の基本として、環境要素を一致させることや、複数パターンの場合には確認したい要素を絞り込むなど、判定材料の吟味が重要であると感じました。ただし、効果や判定は比較的しやすい印象を受けています。 UI選択はどうする? 現在、課内の業務案内掲示板の改修を進めており、どちらのUIが確認しやすいか、また問い合わせ件数が減少するかを試す計画です。ただし、使用するツールが決まっているため、パターンが限定される点と、同時に開示できないジレンマを感じています。 引継ぎはどう進める? 明日から業務引き継ぎ用のマニュアル作成が始まるため、まずは小規模かつ迷惑のかからないメンバーでトライアルを実施します。迅速に変更できる体制を整えることで、双方の良い点と不得意な点の判定を容易にすることが狙いです。

データ・アナリティクス入門

受講生が実感する学びの変革

目標はどう意味づけ? 目標設定は、データ分析のみならず、学び全般にとっても非常に重要だと再認識しました。受講前に描いていた理想像よりも、学びを終えた今の自分は実践できることが増え、単なる分析のプロから、ビジネス現場で分析手法を効果的に活用するプロへと成長できたと感じます。 活かし方はどうして? この学びは、日常のあらゆる業務に活かしていきたいと思います。データ分析の知見が、問題解決や新たな施策の立案に大いに役立つと理解したため、業務全体でその手法を意識していくつもりです。 従来手法は適切? また、現在の担当業務を見直すことで、従来の方法が本当に適切であったのか、見逃している課題はなかったのかを改めて点検していこうと考えています。その結果を踏まえ、今回の受講で得た実体験の知見を活かし、今後必要となる知識やスキルの習得にも取り組んでいきたいです。

デザイン思考入門

挑戦から生まれる気づきの瞬間

サービス説明はどう? 私は新規サービス開発業務において、サービスのコンセプトや内容を1~2枚のパワーポイント資料に簡潔にまとめ、顧客に説明してフィードバックを得る方法を採用しています。加えて、動画など他の手法も取り入れることで、より多様な表現ができればと考えています。 意見を絞るには? また、短時間で作成できる説明資料という点から、これまでの方法が決して間違っていなかったと実感しました。検証したいポイントや求めるフィードバックをもう少し狭く設定することにより、得られる意見が一層具体的になるのではないかとも感じました。 目的はどう伝える? さらに、プロトタイプに唯一の正解はなく、これまで使用してきたパワーポイント資料も十分に効果を発揮しています。重要なのは、どのプロトタイプを作るかという点よりも、その制作目的を明確にすることだと学びました。

データ・アナリティクス入門

仮説思考が拓く成長の扉

仮説思考はどう活かす? 講座を通じて、仮説思考の重要性を再認識しました。仮説思考を持つことで、日々の業務やビジネスにおいて、身近なヒントに気づきやすくなり、柔軟な発想ができるようになりました。 原因分析のポイントは? また、原因分析においてはMECEの考え方や、3Cや4Pといったフレームワークを活用する手法を学びました。一つの仮説に固執せず、多角的な視点から原因を検討することで、初めの仮説を超える重要な要因や、否定すべき可能性に気づくことができると実感しました。 再発防止策はどうする? さらに、仮説思考を実践する中で、一点に執着せず常に広い視点で多くの仮説や原因を想定することが、トラブル対応や再発防止策の検討において非常に役立つと感じています。原因の究明を意識しながら、適切な再発防止策を講座で学んだ知識を活かしていきたいと考えています。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

アカウンティング入門

数字だけじゃなく実像を読み解く

財務の見方はどう? 今回の学習で、業種や企業の特性に応じた財務諸表の読み方が変わることを実感しました。単に数字を見るのではなく、それぞれの企業の特徴を踏まえて仮説を立てながら財務諸表に向き合うことで、より深い理解が得られると感じました。 実践で力をつける? 具体的には、CVCの業務において、投資先やアライアンス先企業の財務諸表を詳細に分析し、企業の強みや弱みを把握する手法や、日経新聞などで注目している企業の情報をもとに投資判断や戦略の立案に活かす方法を学びました。また、実際に特定の企業の財務諸表を基に予想を立て、実態との比較検証を行うサイクルを実践することの重要性を再確認しました。さらに、学んだ内容を上司や同僚に報告してフィードバックを受けることで、実践的な知識をさらに深め、業務に生かしていこうという意欲が高まりました。

「業務 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right