データ・アナリティクス入門

業績分析を変える「比較実践法」

比較分析で何を見つける? 「分析とは比較」という言葉が胸に響きました。この気づきは、新しい考え方というより、これまで業務で実践しているはずが、その意識を持たずに進めていたことへの反省です。意識せずに進めていたため、分析手法や精度、スピードにムラがありました。 月次業績評価のポイントは? 毎月の決算分析において、その月の業績を評価するためには、他の月と比較することが欠かせません。売上が増えたのに利益が減少している場合や、各項目の増減率が一致しない場合などに、その原因を分析する際には、どのように条件付けをすればよいのかをよく考えたいと思います。 効果的な比較の習慣とは? さらに、前月との比較に加え、今年度の平均や前年同月・前年平均との比較も行う習慣をつけたいと思います。また、益となった特殊要因を将来も続けられるようにし、損となった特殊要因についてはその発生を抑えるため、比較分析で終わらずに対策や方針をしっかりと検討していきたいです。

戦略思考入門

実例で磨く戦略思考のススメ

実例で理解が深まる? 3C分析やSWOT分析については、以前から意識していたつもりでしたが、実例の解説が非常に分かりやすく、理解がより整理できたように感じました。 初めての分析体験は? バリューチェーン分析に関しても、従来は言葉としては知っていたものの、具体的な分析手法としての活用方法は今回初めて学びました。事例が具体的で参考になったため、今後の業務などに積極的に活用していきたいと思います。 後進育成と戦略見直しは? また、後進の幹部候補それぞれに3C分析を行ってもらい、自身の強みと弱みを把握した上で、企業活動のどの部分に貢献できるかを考えてもらう取り組みを計画しています。さらに、自社で行っている製造業向けのERPパッケージ導入サービスにおいて、最近、競合他社が低価格設定で攻勢を強めている状況を受け、マネージャー以上で3C分析やSWOT分析の見直しを行うとともに、新たにバリューチェーン分析にも取り組み、提案内容に反映させるつもりです。

データ・アナリティクス入門

4ステップで拓く新たな可能性

問題解決の4ステップは? この講義では、ビジネスにおける問題解決の基本となる4つのステップ―What(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)―を学びました。現状とあるべき姿とのギャップを意識することで、問題そのものを正しく捉え、解決に向けた具体的なアプローチが可能になるという点が印象的でした。 どうして進化を狙う? また、単にマイナスの状態を回復させるだけではなく、既に正常な状態からさらに進化させ、より良い結果を生み出す方法にも目を向ける大切さを理解しました。この学びは、事業性評価や臨床試験の失敗理由の考察、交渉時に相手を説得する際の有効なツールとしても応用できると感じています。 数値情報はどう活用? さらに、データ解析の手法―例えばピボットテーブルの活用―を通じて、日常の業務や意思決定に具体的な数値情報を取り入れる方法を学び、実践的なスキルの向上を目指していきたいと考えています。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

戦略思考入門

戸惑いを乗り越えたフレームワークの力

分析の混乱は何故? これまでのゲイルでは、各分析手法や課題に対して一つ一つ丁寧に当てはめて考えていました。しかし、総合演習で問いに応える際に、突然「何から取り組めばよいのだろう?」と戸惑う場面がありました。そのような状況でも、まずは3Cやバリューチェーンといった、どのビジネスにおいても基本となるフレームワークに沿って考え、足りない視点や不足している情報を整理することで、次の一歩に進むことができると実感しました。 フレームワークの力は? また、今後は物事をフレームワークに沿って考える習慣をしっかりと身に付けたいと思います。特に、バリューチェーンに切り分けて分析する手法は、業務の理解を深めるだけでなく、自社の強みや弱みを把握する上でも非常に有効です。この手法は自分の業務にとって、使わなければならない重要なツールだと感じています。まずは自社とクライアント企業のバリューチェーンをしっかり整理し、分析を進めることから始めたいと考えています。

データ・アナリティクス入門

A/Bテストで見える戦略のヒント

どうして問題が起こる? 問題の原因を探るためのアプローチについて学び、これまでの仮説中心の手法から一歩踏み込んだ問題解決の方法を理解できました。 A/Bテストで何がわかる? 中でも、A/Bテストを用いて施策の効果を比較し、仮説検証を繰り返すことの重要性を学びました。条件をできるだけ揃えて比較することで、より正確な評価ができる点に納得しました。 販売戦略にどう影響? 実際、あるスーパーマーケットの販売戦略を考える際にも、A/Bテストの手法は有用だと感じています。どの商品がより売れるのか、また企画がどの程度影響を与えるのか、複数の案を出して検証することは、戦略構築に大いに役立つと思います。 工数と時間の見直しは? ただし、A/Bテストを実施する際の工数と時間の按分については、今後さらに検討が必要だと感じました。これらの点を踏まえ、実際の業務にどのように活かすかを考えるうえで、引き続き学びを深めたいと思います。

データ・アナリティクス入門

重みを知れば仕事が変わる

各平均値はどう選ぶ? 加重平均は以前から活用していましたが、その際は重み付けの解釈に重点を置いていました。改めて考えると、単純平均、加重平均、幾何平均、中央値といった各種の平均値は目的に応じて使い分けるべきですが、実際の業務では加重平均に偏りがちです。また、見える化の手法としても円グラフやヒストグラムが多用され、ばらつきは主に標準偏差の数値で把握しています。 業務量の重みをどう見る? 業務量の重み付けについては、データから抽出することで一層理解が深まり、数値化により説得力のある説明へとつながると感じています。今後も業務要件を数値から読み解く手法を積極的に採用していきたいです。 数値が語る本質は? さらに、業務量のヒアリング調査結果やシステム利用率など、数値のインパクトは重要な判断材料となります。これらを自分の業務タスクに組み込み、インプットデータのマネジメントを計画の初期段階から取り入れていくことが今後の課題だと考えています。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

データ・アナリティクス入門

みんなで検証!次の一手へ

一方的打ち手はどう? ABテストの学習を通じ、これまで仮説に基づいて一方的に打ち手を実施してきた方法では不十分であると痛感しました。打ち手をただ試すだけでなく、条件を統一して比較することの重要性を実感し、現行の業務プロセスに問題があると感じるようになりました。 複数打ち手の検証は? また、課題に対しては通常一つの打ち手で対応しており、忙しさの中で次々と新たな打ち手を試す状態になっていました。今後は複数の打ち手を検討し、ABテストの考え方を取り入れたうえで、同一条件下でどちらが効果的かを慎重に比較・検証していきたいと考えています。 多角的視点の探求は? さらに、毎週の採用状況確認のミーティングでは、複数の打ち手を提案することで、先週までの分析手法も組み合わせながら多角的な視点から糸口を探っていく予定です。これを足掛かりに、次のステップに進むための具体的なアクションを模索し、ABテストの実施と継続的な検証を行っていくつもりです。

データ・アナリティクス入門

市場のヒントがここに!実践分析術

何で3C分析が有効? 今回の授業を通じて、市場や企業、競合の現状把握に役立つ3C分析の有用性を改めて実感しました。顧客のニーズや市場の動向、さらに自社の強み・弱みを整理する過程は、企業戦略を考える上で非常に参考になりました。 どう活かす4P分析? また、4P分析の学習を通して、製品の特性、価格設定、流通戦略、プロモーションの各要素がどのように組み合わさってマーケティング戦略が形成されるか、具体的に理解することができました。各事例をもとに、直接実務に活かせる観点で考察を進める姿勢は、今後の業務改善や新たな戦略立案に大いに役立つと感じました。 なぜ視野を広く? さらに、分析手法を検討する際には必ずしも自社内のルールに固執せず、他社のプロセスや市場全体の流れを含めた幅広い視点で情報収集を行うことの重要性も再認識しました。今後も今回の学びを実際の問題解決に積極的に応用し、より実践的な戦略構築に努めていきたいと思います。

データ・アナリティクス入門

アウトプットが照らす分析の道

データ収集時の注意点は? データ収集の段階で、最終的なアウトプットのイメージを明確に持つことが非常に大切だと改めて実感しました。演習を通じ、ただ漠然とデータを分析するのではなく、何を理解したいのか、どのような知見が得られるのかを意識しながら分析する必要があると感じています。 仮説の重要性は? これまでは業務上、データを加工して気になる情報が見つかればその伝え方を考えるという流れで進めていたため、分析を行う際には、まず仮説とアウトプットのイメージを持つことが質の向上に大きな差を生むのだと実感しました。 質向上への取り組みは? この経験をもとに、売上の変動分析においても、従来の手当たり次第の手法から脱却し、しっかりとしたアウトプットのイメージを持って取り組んでいきたいと考えています。また、以前「分析がわかりにくい」という指摘を受けたこともあり、優れた分析手法を取り入れることで、さらなる質の向上を目指します。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

「業務 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right