クリティカルシンキング入門

受講生の学びが未来を創る

課題は何を導く? イシューの特定や、今解決すべき課題の明確化は、さまざまなビジネスシーンで重要な手法だと感じています。まず、課題を明確にし、周囲と確認し合い共通認識を持つことで、チーム全体が同じ方向に進むことが可能になります。日々の業務の中で、この手法を取り入れることで、効率的な問題解決が実現できると実感しています。 社内で何を伝える? 社内広報担当として、経営層の考えや社内の出来事を社員に伝える役割を担っています。今回学んだ手法を活かし、情報を論理的で分かりやすい形に整理・可視化することにより、社員が重要なメッセージを正確に把握できるよう努めています。たとえば、社内報で経営方針や施策の意図を伝える際は、伝えるべき情報を優先順位ごとに整理し、主要なポイントを明示するとともに、四半期ごとの成果や変化を示すグラフを用いて視覚的な理解を促す工夫をしています。また、施策の背景やその重要性について補足情報を加えることで、情報の意義をより深く伝え、社員の共感を得られるように心がけています。

データ・アナリティクス入門

業務効率化のカギはデータ分析と説得力!

日々の意思決定は? 業務で日常的に行っている意思決定も、「分析」の結果であるということに気づいた。また、より早く、より良い意思決定を行うためには、「データ」の性質を理解し、効果的な比較を行い、他者が納得しやすいようにグラフ等を使用する必要があることを学んだ。 なぜ運用を変えるのか? 業務効率化を進めるため、新しい運用を推進することが日常的にある。その際、従来のやり方を変えたくないメンバーも多いが、以下のプロセスを踏むことで業務効率化をスムーズに進められるようになると思う。 まず、なぜ運用を変更した方がいいのかをしっかり分析する。そして、反対メンバーが理解し納得しやすいように、グラフ等も活用しながら分析結果を提示する。 学んだ内容をどう活かす? まずはWEEK6までの学習の中で、「分析手法」「データの性質」「それぞれのグラフの特徴」をしっかり自分の身につける。そして、WEEK6までで学んだ内容をすぐに実践に取り入れ、上司やメンバーを巻き込み、業務効率化を達成していく。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

学びを動かす日常の工夫

A/Bテストの意義は? A/Bテストの存在を知ることができ、業界ではそのような視点があまりなかったと感じました。また、week5はこれまでの中で一番難しく感じました。グループワークでAIの活用を聞いていたので、実際に少し取り入れてみました。動画で指摘されていたように、日常生活の中でこうした思考や手法を実践することが、身につけるために重要だと痛感しました。 転職と時間管理は? プライベートでは、転職の検討や残業削減の工夫、高額な商品の購入を見据えた時間の使い方について考えています。例えば、まずはどの仕事にどれくらいの時間がかかっているかを計測することから始める予定です。 研修と目標達成は? 一方、業務面では、研修担当として対応できる研修の分類や不足している部分を調査し、人材育成モデルとの紐づけを行いながら、研修内容の過不足を確認しています。また、年間計画の検討や売上目標達成に向けた具体的な行動計画の作成、社内合宿のアンケート結果の分析にも取り組んでいます。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

リーダーシップ・キャリアビジョン入門

あなたらしさを引き出す未来への道

個々に合わせた指導は? 若手の人材育成に、これまでの一律なアプローチではなく、個々に合わせた目標設定が必要だと感じています。これまでは同じ話やワークを提供していたため、ゴールまでの道筋が曖昧になっていました。今後は、各自が目指す人物像や理想の姿を明確にし、その実現のために個別の指導を行いたいと考えています。また、前提となる環境要因に基づく情報提供が、やる気の向上にもつながると期待しています。 支援手法はどう変わる? さらに、メンバーに合わせた指示型、参加型、支援型、達成志向型のワークを取り入れ、全体ミーティングで共有することで、メンバー間の相互理解を深める計画です。異なるアプローチを柔軟に使い分けることで、それぞれの適性や経験を活かした支援が可能になると考えています。 業務配分のコツは? また、日常業務においては、どの業務内容をどのレベルのメンバーに割り当てるかを検討し、各自の目標達成への道筋を具体的に示すことで、メンバーの自立を促していきたいと思います。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

データ・アナリティクス入門

仮説で切り拓く課題解決の道

実践的な手法は? フレームワークを活用して問題解決に取り組む重要性を再認識しました。かねてから仮説を立てる意識はありましたが、3Cや4Pといったツールを具体的に活用する方法を学んだことで、より実践的なアプローチが可能になったと感じています。 仮説の違いは? また、問題解決の仮説と結論の仮説の違いや、過去・現在・未来といった時間軸での仮説の切り口についても学びました。これらの考え方を今後のフレームワーク活用に組み合わせることで、より柔軟かつ具体的に問題に対応できると期待しています。 地域課題の対策は? 日常業務においては、無意識のうちに問題解決の仮説と結論の仮説を使い分けながら、地域ごとの課題や効果的な解決策を検討してきました。特に、地域が抱える課題に対して多角的な打ち手を検討する際には、課題解決の基本となる仮説思考が大いに役立っています。一方、他地域の成功事例を取り入れる場合などにおいては、結論の仮説を意識することで、より具体的な方向性が見えやすくなりました。

データ・アナリティクス入門

数字が導く明日の解決策

問題箇所はどこ? 問題個所の特定は、次のアクションプランを考える上で非常に重要です。数値に基づいて問題箇所を洗い出し、優先順位を明確にすることで、納得のいくアクションプランを策定できます。また、数字に紐づく具体的な行動も同時に把握することで、プロセス全体の見直しの基準が整います。 課題解決はどう進む? 課題解決は、問題をプロセスに落とし込みながら進めることが求められます。What、Where、Why、Howといった基本の枠組みに沿って対応することで、業務改善の手法の一つとして、DX化推進の取り組みも効果的に実施できるのではないでしょうか。 目的設定はどう? 目的の設定においては、まず問題や課題を洗い出し、その中から複数ある項目に対して優先度を付け、分析と順位付けを徹底します。その上で、アクションプランを策定することが求められます。さらに、UI/UXに関わる場合はA/Bテストを取り入れ、スタンダードなフレームワークに沿った進め方を実施することが重要です。

クリティカルシンキング入門

課題解決の第一歩は全体像の把握

全体像を捉える重要性は? まずは全体像を捉えることが重要です。様々な視点から分解することで解像度が上がり、具体的な問題や、これまで気付かなかった問題にも気付けるようになります。このため、入ってくる情報に対して適切なフィルターを掛けて受信することが求められます。 問題解決のために何を心がける? 直面する問題に対して、まず全体像を知ることを心掛けたいと思います。その後、どのプロセスに課題や問題があるのかを分析していきます。この手法は、業務フローで全体を見える化し、どの工程でエラーが起きているのかを確認するのに適しています。頭の中でも自然にそれを描き、実践していきたいと考えています。 効率化のためにはどんな工夫が必要? 上記の通り、頭の中で全体像を想い描けるように、常に心がけることが重要です。その癖をつけるために、まずは紙などに書き出して頭の中を整理するように取り組んでみたいと思います。様々な業務の効率化を追求するために、MECEを活用していきたいと考えています。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

デザイン思考入門

予期せぬ挑戦で深まる学び

経営層とのズレは? 総務の分野では、明確なゴールや課題意識が設定された状態で業務が依頼されることが多く、経営層と現場の考え方のズレを常に意識しながら問題解決に取り組む重要性を感じました。経営側が示すのは課題定義までであるため、実際に試作品を作る過程で予期せぬ問題が発生することを体験し、学びが深まりました。 AIデザインはどう? 生成AIを活用してデザインを作成する試みは、予想以上に難しいと感じました。自分のイメージを正確に反映させるためには、プロンプトの使い方をさらに工夫していく必要があると感じています。また、思いもよらない結果が得られることもあり、試行回数を意識することが大切だと思いました。 試作の修正ポイントは? 加えて、生成AIの利用はもっと意識的な操作が求められる点、試作後に自ら修正箇所を見出す経験が得られる点、そしてデザイン思考入門で学んだ手法が、自分の予想を超える、または改善された成果を生み出す可能性があることを実感しました。

「業務 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right