データ・アナリティクス入門

データ分析で変わる意思決定の未来

データ分析の意義とは? データ分析をビジネスに活用することの本質を理解し、考え方や手法を再設計して、自分のものにしたいと感じました。データ分析で課題を解決するとは、「勘と経験に頼る意思決定の方法を、データ分析を用いた合理的な意思決定へと改めること」を指しています。そのために必要なことを次のように整理しました。 シナリオ設計のコツは? まず、ビジネスに貢献するシナリオを描くことが重要です。そして、データを基にした意思決定プロセスを設計し、解消したい問題と解決する課題を言語化します。さらには、意思決定のプロセスを形式知として明文化することが必要です。 問題点は何か? 具体的な問題としては目標未達があり、その課題として購入増加、キャンセル回避、Webサイト離脱の回避、および集客増加といった点が挙げられます。これらの課題を「意思決定プロセス」に深く掘り下げていくことが今後の大きな課題と考えています。 今後の展望は? 今後の6週間では、問題と課題のさらなる言語化を進めていきたいと思っています。また、意思決定プロセスの6種類のうち、特にマーケティング型の「仮説試行型」と、経営者の思考バイアスを低減させるための経営者判断型について、さらに学びたいと考えています。そして、意思決定プロセスの形式知化を設計していく計画です。

クリティカルシンキング入門

問題解決の全体像に迫る 分解の力

物事の分解で何が見えてくる? 物事を分解することで問題の特定や後続の対策が立てやすくなると感じました。特に、目的を意識しながらどのように分解すれば感度良く対応できるかを最初に考えることが重要です。 問題解決の4ステップとは? 問題解決のステップとしては、What→Where→Why→Howの順番を意識することが大切です。しかし、実際にはいきなりWhyやHowに進んでしまう場面もよく見かけます。この点を改善することで、より効果的な問題解決が可能となるでしょう。 トレンド分解にはどんな方法が? トレンドを分解する際には層別分解が役に立ちますが、データを活用した商品企画に適用する場合にはプロセス分解が求められます。プロセス分解では具体的に何をしているのか、何を決めるのかを明確にしなければ、「入店」や「着席」といった単純な分け方になりがちです。 チームサポートに必要な視点は? また、チームメンバーが困っていることや解決すべき課題を見据えた上で整理のアドバイスをしていくことが必要です。プロセスで困っているのか、情報の捉え方で困っているのかを見極めることがポイントです。 売上分析に層別を活用するには? 売上についても触れるシーンがあるため、層別や変数別の考え方を忘れずに、定期的に使ってみることが求められます。

クリティカルシンキング入門

切り口で解く学びと発見

どう分解する? データを分解して理解するためには、対象を個々の要素に分けることが重要です。特に、When、Who、Whatといった切り口を活用することで、分析がスムーズに進むと感じました。問題に直面した際には、まずこれらの視点に当てはめることを意識する点が良いと思います。 分析は広がる? 今回の総評では、具体的な手法としてWhen、Who、Whatを用いながらデータを分解するアプローチが評価されています。さらに、より多角的な視点を持つことで、分析の幅が一層広がる可能性があると感じました。 他の切り口は? また、思考を深めるための問いとして、WHO、WHAT、WHEN以外にどのような切り口が考えられるか、またMECEに分解する際に意識すべきポイントは何かといった疑問が提示されました。これらの問いかけは、多面的にデータを観察する習慣を身につける上で大切だと考えます。 管理法はどう? プロジェクト管理においても、この手法は進捗管理や不具合管理に活かせるでしょう。既に使用しているツールの補助として、まずはWhen、Who、Whatを当てはめることを意識し、課題の抽出に役立てることができます。また、グラフ化も可能なデータ収集を心がけ、評価のポイントを事前に決めることで、より効果的な分析が期待できるでしょう。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

アカウンティング入門

お金で読み解く自社の知られざる価値

お金の視点、どう捉える? 改めて会社内のさまざまな活動を、お金の動きという視点で捉えるという考え方が新鮮で、とても興味深く感じました。社内のデータやその基になる活動を詳しく調べる中で、実は自分たちの会社についてあまり知られていない部分が多いことに気付かされました。今後は、何事においてもお金の流れという側面を意識して理解を深める習慣をつけたいと思います。 事業部比較はなぜ? 現在、複数の事業を展開する自社において、事業部別の事業構造や実態を比較把握するプロジェクトに取り組んでいます。このプロジェクトの内容は、改めて自社の活動をお金の動きの観点から理解するという視点と直結していると感じました。特に、私たちの企業は設備投資をあまり必要としない労働集約型であり、人材が最も重要な資産であることから、その活動を金銭面でも検証してみたいと考えています。 活動はどう検証する? まずは、どのような活動が行われているのかを明確に列挙する必要があります。続いて、それらを体系的に整理し、活動の目的や実態、課題などを明らかにした上で、金銭的な要素も加えていくつもりです。人的資本経営という視点では、誰が誰に対してどのような目的でどんな活動をしているのかをすべて定量化するのは難しいものの、可能な限り数値で表せるよう努めていきたいと思います。

クリティカルシンキング入門

頭の使い方で未来を切り拓く学び

思考の基盤はどうなる? クリティカルシンキングは、ビジネスの基盤となる思考法であり、知識を実務に活かすための重要なスキルです。自分自身の思考を客観的に問い直す「もう一人の自分」として、この手法は、自らの制約や偏りに気づき、改善するための「頭の使い方」を定着させることを目指します。そのため、「3つの視」や「具体と抽象」といったフレームワークを活用し、思考の幅を広げることが求められます。 面会で何を確認する? 顧客との面会においては、現状の治療状況や関係するデータから得られる洞察を基に、未充足のニーズの把握やエビデンスの創出に努めています。こうした過程で、顧客との信頼関係が深まれば、真のニーズを的確に把握でき、結果としてチーム全体の活動にも良い影響を与えると考えています。信頼関係を築くためには、円滑なコミュニケーションに加え、顧客に新たな気づきを提供するスキルが不可欠です。そのため、面会に際しては「頭の使い方」を正しく理解し、より効果的な対話を目指しています。 議論でどの視点を問う? ディスカッションの場では、考えに偏りがないか常に意識することが重要です。視点、視座、視野といった多角的な観点から課題にアプローチし、自分自身を問いながら積極的に質問や発言を行うことで、問題点の正しい理解と方向性の明確化を図ります。

データ・アナリティクス入門

目的意識で未来を切り拓く

学習前の心構えは? まず、学習に入る前に心構えをしっかり持つ時間が取れたことが非常に有意義でした。データ分析の授業でも触れられていた「目的地」の重要性に気づかされ、目的を定めずに学習を進めると、行き当たりばったりになってしまい、自分が本来得たい知識が得られないという現実を改めて実感しました。 分析手段の真意は? また、データ分析は単なる分析そのものが目的ではなく、目的を実現するための手段であり、その手段を用いて仮説を立てることが本質であるという点も認識できました。目的意識を明確に持って初めて、必要なデータの抽出やその後の分析が効果的に行えるのだと理解しました。 売上報告にどう活かす? この学びを、毎月作成している売上の月次レポートに活かしていきたいと考えています。売上報告では、現状の振り返りを通じて得られる情報を整理し発信しています。月ごとに売上は変動し、好調な時もあれば不調な時もあるため、どの要素に着目すべきかを明確にし、良い状態を維持するための具体的な目的を掲げる必要性を感じました。 具体的には、全体の売上維持や増加という大目標に対して、注目すべき項目を検討し、その項目に関連するデータを抽出します。そして、期間中のデータを元に仮説を立て、その仮説をチームに提示するというプロセスを実践していく予定です。

アカウンティング入門

高級感と気軽さ、カフェ経営の秘密

非日常カフェのリスクは? week1とweek2を通して、2つの異なるカフェのビジネスモデルについて学ぶことができました。ひとつは、非日常の高級感を提供するコンセプトのカフェで、高単価な商品設定に合わせた売上原価や販管費がかかる点と、簡単に価格を下げることのリスクを理解しました。 日常カフェの戦略は? 一方、日常的な気軽さをコンセプトに据えたカフェでは、薄利多売モデルをとるため、商品価格の低さに加え、売上原価や販管費をできるだけ抑える工夫が求められていました。また、固定費を賄うために多くの顧客に購入してもらう必要がある点も学びました。 収益の違いは? この学びから、同じ業種であっても、ビジネスモデルによって収益性や費用の構成比が大きく異なることが明らかになりました。今後、同業他社との比較において、販売単価と特に販管費の構成比がどう異なるのかを詳細に分析していきたいと考えています。 PLギャップをどう? さらに、財務三表を公開している企業のデータを収集し、自社のPLが目指すビジネスモデルとどの程度一致しているか、またどの項目にギャップがあるかを検討することが重要だと感じました。ギャップが見られる場合には、どのような施策で戦略と数値を整合させるかという具体的な改善案を出していくことが課題となるでしょう。

データ・アナリティクス入門

データで挑む問題解決の旅

問題解決の順序はどう? 問題解決のステップとして、「What, Where, Why, How」の順序で進めることが重要です。やみくもに分析を開始するのではなく、順序立てて進め、数字に基づいたストーリーを構築することが求められます。データ分析においては、比較対象をはっきりさせ、集めたデータをしっかりと加工し、原因を特定する努力が重要です。 採用改善はどう進める? 採用手法を模索する中で、SNSや自社サイトの採用ページの改善を進めるには、コンバージョン率やファネル分析を活用して、離脱ポイントを特定することが有効だと考えました。それにより、コンテンツの見直しも可能になります。 企画提案の進め方は? このように分析を進める際は、初めに仮説を立て、結論のイメージを持つことが肝要です。何のために分析をするのか目的を明確にし、課題を特定するステップで進行することが大切です。特に、来年度に向けての企画提案の時期においては、データを活用して説得力のある資料を作成したいと考えています。そのために、データ分析の手法を復習し、自分自身の知識として確立する必要があります。また、データをさらに深く理解するためには、エクセルの関数についても知識を深めることが必要そうです。これについては、AIを活用し、日々学び続けたいと思っています。

データ・アナリティクス入門

業種別データ分析の秘訣と実践

分析の方針をどう決める? 分析は比較によって意味を持つため、何と比較するのかを明確に決めることが大切です。そのためには、分析の依頼を受けた際に徹底したヒアリングを行い、分析前に方針を確認することが重要です。 データ収集のポイントは? データを収集する段階では、業種ごとの製品購入傾向に関する仮説を立て、どのような可能性があるかを考慮しながら分析を進める必要があります。データの結果をわかりやすく伝えるために、グラフを効果的に活用することも心掛けています。具体的には、比較をする際には棒グラフ、割合を示すには円グラフを選び、明示的な説明ができるように努めます。 過去の売り上げ分析は? これまでの売り上げ実績を分析する際は、業種ごとの売り上げ傾向を細かく見ていきたいと考えています。これまでは月ごとの売り上げ傾向のみを漠然と見ていましたが、さらに業種ごとの人気機種の傾向も分析することで、今後の営業アプローチのヒントを得たいと思います。 必要なデータは何か? まず、何を分析したいのかを洗い出し、そのために必要なデータを考えます。データを抽出した後、月ごとの製品売り上げ傾向や業種ごとの売り上げ傾向をグラフ化し、傾向分析を行います。わかりやすいアウトプットを心掛け、今後の営業活動に活かしていくことを目指しています。

データ・アナリティクス入門

データ分析で見つけた新たな気づきと行動力

解決策をどう選ぶ? 適切な解決策を決定する際には、決め打ちせずに他の仮説から導き出されるHowも考慮することが重要だと感じました。自社が現状で何を優先すべきかを考え、解決策同士を比較しながら適切な選択をする必要があります。そのためには、常に目的と優先事項を意識し、立ち戻って再考することが必要だと思います。 行動が生む成果とは? 完璧を求めすぎるあまり、仮説の検証ができない、考えすぎて動けなくなることもあります。ある程度の目途がついた時点でまず行動することが、結果的に良い仮説を生むことになります。 データ整理の新たな切り口 データを切り口を変えて整理する方法について述べます。物流会社で専用アプリを使用してトラックの待機時間を集計していますが、単なる集計だけでは不十分です。時間帯別や事業所別など切り口を変えてデータを整理し、今後の活用方法を示す必要があります。 業務プロセス改善の手順 問題箇所を特定し、各事業所の業務プロセスのどこに起因しているかをグループ内で議論したいと考えています。最終的には、待機時間の集計作業から業務プロセス改善まで話をつなげたいと考えています。そのために、本講座で学んだ「客観的にわかりやすく数値化して説明する」ことを意識しながら、メンバーと議論を続けていこうと思います。

データ・アナリティクス入門

マーケットの広がりを感じる分析の魅力

データ比較で新たな発見をどうする? 他のデータと比較することで、新たな洞察を見出すことが重要です。分析のプロセスとしては、まず目的を明確にし、次に問いに対する仮説を立て、その後データを収集し、最終的に分析によって仮説(ストーリー)を検証します。 どの分析視点が有効か? 分析における視点としては、インパクト、ギャップ、トレンド、ばらつき、パターンを見ることが大切です。具体的なアプローチとして、代表値(単純平均、加重平均、幾何平均、中央値)やばらつき(標準偏差)を使うことで、データの特徴を理解します。 仮説検証で気づく新たな問題は? 提案する際に、自分の仮説を立証するためのツールとして、これらの手法を使いたいです。仮説には正解がないことから、むしろ仮説が間違っている場合は、実際の状況とのギャップに気づきやすくなり、新たな問題発見につながります。ですので、間違った仮説を立てることも恐れず、仮説の幅を広げたいと思います。 勘と経験を超えて新たな仮説を 長年、勘と経験で仮説を立てていましたが、自分の思考範囲を超えた仮説を立てることで、マーケットの状況を広く知り、新たな問題点に気づけるようになります。また、いろいろなグラフを作成し、自分の仮説に対して一番説得力があるものを比較してみたいと考えています。
AIコーチング導線バナー

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right