データ・アナリティクス入門

課題解決を導く仮説思考の力

仮説構築フレームワークの活用法は? 仮説構築のフレームワーク(3Cや4P)を課題解決に活用し、実際に使うことで自分の思考のクセを理解しました。このフレームワークは何度も活用して定着させることが大切だと感じました。また、手元にデータがあるとすぐに分析を始めるのではなく、まず複数の仮説を立ててからデータを用いて検証する順番を強く意識する必要があると学びました。これは、私がデータがあるとすぐに分析に取り掛かるクセがあるためです。 依頼元とのコミュニケーションの重要性 各事業の依頼に対しては、目の前のデータだけで解決するのではなく、本質的な課題を見極めるために依頼元とコミュニケーションをとりながら仮説を立てていくことの重要性を感じました。今回学んだフレームワークを活用し、事業ごとに複数のフレームワークを使い分けながら仮説を広げていくつもりです。 伴走案件への仮説思考の応用法は? 来週から複数の伴走案件が始まる予定なので、課題に対して広い視野を持ちながら仮説の幅を広げていきます。多くの案件を同時に進行する中で、関心や問題意識を向上させると共に、課題の深掘りに差が出ないよう、仮説思考を実践していきたいと思います。

データ・アナリティクス入門

データ活用で未来を変える!実践的AB分析の学び

AB分析の学びとは? AB分析の考え方を学んだことは非常に参考になりました。以前の職場でGoogle Analyticsを使って広告を打っていた時、状況や変更条件を明確にせず、場当たり的に行動していたことを反省しています。 仮説を立てる重要性を知る また、問題解決の過程で仮説を立てることの重要性も学びました。これまではなんとなくデータを集め、目的が薄いままに対応策を練ることが多かったため、今回の学習でその姿勢を改める必要があると感じました。 長期的な効果検証の可能性 さらに学んだこととして、数か月単位で施策を変更するのは難しいものの、一年から数年単位で効果を検証することは可能かもしれないということです。例えば、入学後のパフォーマンスを分析して入試の内容を変える、といった具体例が上げられます。 必要なデータをどう見極める? 現在、大学内で取得しているデータについて、真に必要なものは何か、また不足しているものは何かを見極めたいと考えています。学生生活の構成要素を学業やサークル活動、就職だけでなく、より多くの要素に分解することで、学生のリアルな状況がより理解できるのではないかと思っています。

データ・アナリティクス入門

業界事例で実感!仮説検証術

どうして分解が有効? 様々な要素に分解して仮説を組み立て、データを意識した点はとても良いと思います。具体的な業界事例に当てはめて考えることで、理解がさらに深まるでしょう。 具体例はどう映る? 仮説を立てる際には、具体的な業界やビジネスシーンの例を考えると、思考がより深まります。また、データを検証する際にどのようなツールや手法を用いると効果的かを検討することも大切です。 実践で活かすには? 実際のビジネス状況で仮説検証をどう活用するかを考え、具体的に練習することが求められます。引き続き、さまざまな角度から課題を検討してみましょう。 なぜ幅広い視野? 課題は狭い視野だけでなく、幅広い角度で網羅的に考える必要があります。そうしないと、本当の課題を見落としてしまう恐れがあるため、どのようなデータで検証できるかもしっかりと検討することが重要です。 共有はどう役立つ? 自分の考えに固執せず、要素の重要性を周囲と共有しながら多角的に検討していくことが必要です。そして、どのように検証すべきか、またどの項目を指標として設定すべきかを同時に整理していくことが求められていると感じました。

クリティカルシンキング入門

MECEで魅せるデータ分析の力

MECEをどう意識する? MECEを意識することの重要性を学びました。まず、全体の定義をしっかり決めることが前提です。そして、「モレなく、ダブリなく」を心掛け、仮説を基にさまざまな切り口で分析を進めることが大切です。 データ分析の本質とは? 分析の有用性についても深く理解しました。ただ単に目の前のデータを眺めるのではなく、データを加工し、グラフなどで視覚化することで判断基準が明確になります。例えば、複数年度にわたる人員計画策定においては、現状の人員の将来的な年齢や職責の推移を様々な観点で視覚化し、どの世代の中途採用を強化するべきか分析していきたいと考えます。この分析を通じて、異なる雇用形態を持つ人員の流れを分かりやすく可視化できればと思っています。 効率的なデータ可視化のコツ さらに、実際に手を動かし、データを分解したり、グラフ化することで可視化する努力が重要です。そして、自分以外の視点や意見を取り入れて俯瞰的に見つめることも忘れずにいたいです。全体の定義を決め、モレをなくすため四角を埋めることを意識しながら、自問自答を繰り返し、誰が見ても分かりやすいデータを提供できる資料作りを心掛けたいと思います。

クリティカルシンキング入門

データ整理で見えた多面的な視点の新発見

データはどう活かす? データをグラフ化することで、共有者全員が視点の漏れを確認でき、短時間で状況を把握できることに気付きました。角度を変えて情報を整理することで、複数の視点を生み出すことができました。また、留意点として、分解する際には、思いつくことから手を付けるのではなく、「When」や「How」といった枠組みで考えることで、漏れのない結論にたどり着けることを実感しました。 部門承認はどう取得? 研修計画を部門承認に使用する際には、実施方法や日程、参加者の切り分けなど、多くの検討事項があります。部門の承認を得るために、目的に沿った切り分けの考え方を使う必要があります。そして、部門説明の際には、即座に理解できるわかりやすさや、視覚的に理解が進む資料を重視したいと考えています。学んだグラフ化を使用する機会は少ないかもしれませんが、情報が伝わりやすい図の検討が重要です。 資料作成の工夫は? 具体的には、切り口や切り分けの考え方を一枚にまとめ、自分なりの順序を整理します。そして、研修計画の検討事項ごとに切り分けを行い、提案資料を作成する際には、数字や表ではなく、図で示すことができるよう工夫してみます。

デザイン思考入門

顧客の声が未来を創る

顧客の声をどう活かす? 顧客とのコミュニケーションを活用する考え方は、営業提案の際に顧客からのフィードバックを積極的に求めることで、具体的な課題や求める解決策を明らかにできる点が魅力的だと感じました。顧客が直面する問題の背景を深堀りすることで、提案に反映させるアイデアが生まれる可能性を実感しています。また、社内でのブレインストーミングやアイデア出しのセッションでも、従業員の体験や市場トレンドに基づいた意見交換を行うことで、新たな視点が得られると考えています。 直接対話で何を学ぶ? さらに、顧客と直接対話することで、従来のデータ分析だけでは捉えきれなかったニーズや感情を把握できることに気づきました。具体的な課題を共有するプロセスは、提案の精度向上や信頼関係の構築に大いに寄与することが分かりました。 発想の自由さは何故? また、デザイン思考の「発想」プロセスでは、顧客のニーズや課題を十分に理解し、自由な発想を促すことの重要性を学びました。実際の顧客の声に基づいて多様な視点を取り入れることで、創造性が一層高まり、プロトタイピングを通じて迅速に形にすることが、実践的な解決策を生む鍵であると再認識しました。

データ・アナリティクス入門

ロジックで紐解く成長のヒント

問題をどう洗い出す? 今回の学習では、まず何が問題であるかを洗い出し、その問題箇所を明確にすることの重要性を学びました。問題の原因を詳しく分析し、対策を検討・実行するプロセスや、結果から各要因を考察する点、さらに理想と現状のギャップを埋めるための工夫が大切であると実感しました。 分析手法は何か? また、分析手法としてロジックツリーやMECE分析、さらに階層分析と変数分析の活用が有効であることを学びました。これらの手法を用いることで、データの整理がしやすくなり、効率的な分析が実現できると感じます。 実例で何を発見する? 具体例として、交通系ICカードの決済データを利用し、加盟店やキャンペーンごとの売上分析に応用できる可能性があると考えました。売上分析においては、年代、性別、居住地、曜日などの視点で検証し、来店回数や決済金額の傾向も踏まえて全体的な分析に役立てたいと思います。 量と質のバランスは? 最初の段階では、質よりも量を意識して経験値を積むことが重要と考えています。質も適度に保ちながら、実践を重ね、ロジックツリーやMECE分析を積極的に活用してデータ分析に取り組んでいきたいと思います。

クリティカルシンキング入門

データの読み解きで広がる新たな視点

「眼に仕事をさせる」とは? 「眼に仕事をさせる」というキーワードが強く印象に残りました。データの素材を抽出した後、それをどのように分解して分析するか、「本当にそうなのか?」と丁寧に考えることの大切さを学びました。手を動かしてグラフに加工し、分解の方法を工夫し、分析結果を基にさらに複数の切り口で見直してみる。こうした広がりや深まりを追求することが、業務遂行上大切だと感じました。 顧客満足度を高める方法は? この考え方は自身の業務に限らず、顧客満足度を高めるための分析をメンバー間で進める際にも重要です。多くの切り口から傾向を探ることで、データ上から納得できる顧客感情の変化を捉え、ニーズに応えるストーリーを共に描きたいと思います。 視覚化の重要性は? グラフにして視覚化することで、数値の羅列では見えなかった傾向が見えてきます。しかし、多忙の中で実行できていない現状があるのも事実です。時間の制約がある中でも最適な分析を尽くすためには、「別の視点から見るとどうなのか?」と語り合える余裕を持つことが求められます。高い視座と粘り強さを有する強いチームづくりに向けて、今回の学びを生かしていきたいと感じました。

戦略思考入門

集合知を活かした新戦略の発見

競合データをどう見る? マーケティング部門との会議で競合分析のデータを基にした今後の戦略方針が示されることがありますが、彼らがどんなデータを元に議論しているのか、理解できました。今後はフレームワークを意識して使うことを心がけたいと思っています。そして、多くの人が一緒に考えることで生まれる「集合知」が非常に有効であることも学びました。 フレームの真実は? これまで、フレームワークは営業部門専用のものとの先入観がありましたが、実際には面接の事例のように幅広く活用できることを知りました。新商品の投入には大きな時間と費用がかかる業界において、自社の強みを活かせる分野を強化し、他社がまだ参入していないニッチな分野にも積極的にチャレンジしていきたいと思います。 計画はどう伝わる? また、プロジェクト計画を策定する際には、自分たちがやりたいことだけをリストアップするのではなく、経営者の視点から見た利益や強みを活かす方法、さらには将来的な変化による影響も考慮していきたいと考えています。チーム会議の頻度が高い中で、「集合知」の重要性をメンバーに共有し、より活発なブレーンストーミングを促進していきたいと思います。

クリティカルシンキング入門

論理とデータで切り拓く変革

本当に原因を掴めた? クリティカルシンキングの動画を通して、問題が起こった際に分析せず「なんとなく」原因を特定し、「とりあえず」の解決策に飛びつくことが非効率であり生産性を下げるという点を再確認しました。 思考の見直しは? 自分の思考偏りや思い込みに気付くとともに、WHAT、WHERE、WHY、HOWといった観点から要素を分解し、数値などの客観的データに基づいて対応策を検討する必要があると実感しています。 前例に縛られている? また、学校内のさまざまな業務では「前例踏襲」や「経験則」に頼る場面が多いと感じています。そこで、問題解決のためには客観的データに基づき、論理的かつクリティカルに考える文化を醸成することが、今の時代にふさわしく、生徒も教員も共に多く学べる環境作りにつながると考えています。 実践はどう進める? 学んだ知識を実践に移すことが重要です。特に、これまであまり取り組んできなかったデータをグラフで示す方法にも積極的にチャレンジしていきたいと思います。 ツールの使い方は? さらに、ロジックツリーを日常の思考訓練のツールとして活用していくつもりです。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

クリティカルシンキング入門

問い続ける実践の発見ストーリー

なぜ即答に飛びつくの? 今回、事前にさまざまな切り口でデータを分解して取り組んでみましたが、実践してみると答えにすぐ飛びついてしまう傾向に気づきました。こうした状況を避けるためにも、出てきた答えや傾向に対して常に「本当にそうなのか?」と問いかけることが重要だと学びました。 MECEで何を感じた? また、MECEの考え方を学び、もれなくダブりなく切り分ける基本的なパターンは把握できたものの、プロセス分解という視点は初めて触れるものであり、新たな発見となりました。 顧客分析はどう進む? 現在、顧客満足度調査を実施しており、まもなく結果が出る状況です。評価と顧客への対応との関係を分析する予定でしたが、今回学んだデータの切り口やMECEの考え方を活かして、層別分解に加えプロセス分解を取り入れた分析を試みたいと思います。 新手法に何を期待する? 来月には顧客満足度調査の結果分析を行う予定で、メンバーが実際に分析に取り組む中で、出てきた答えに対して常に「本当にそうなのか?」と問いかける姿勢を大切にし、層別分解とプロセス分解を組み合わせた新たな手法を提案していきたいと考えています。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right